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Since we are interested in the Stark shifts of and the populations transferred into various ionic states,
the model contains the ground neutral state and several ionic states. The energies and the transition dipole
moments (TDM) of these states are usually from an ab initio electronic structure calculation. In addition
to the IR pulse which is used in experiment, an artificial weak VUV pulse is introduced to couple the
neutral to the ground ionic state since we do not model the actual ionization process. The model does not
include any nuclear dynamics.

1 Pulses

Use 2 pulses, IR and VUV, to model the laser pulse in the lab:

EIR = EIR(t)
(eiωIRt + c.c.)

2
= EIR(t)cos(ωIRt) (1)

EV UV = EV UV (t)
(eiωV UV t + c.c.)

2
= EV UV (t)cos(ωV UV t) (2)

For a Gaussian temporal envelope, E(t) = Ee−
t2

2T2 , FWHMfield = 2
√

2ln2 T and FWHMintensity =
2
√
ln2 T .
For a cosine square temporal envelope, E(t) = Ecos2(πtT ), FWHMfield = T

2 and FWHMintensity =
2acos(0.50.25)Tπ u 0.364T .

In the following, we distinguish two different cases depending on whether the spin-orbit coupling is
included in the ab initial calculation the states’ energies (compare equations (4) and (16)):

2 Diabatic Basis

The total Hamiltonian consists of 3 parts, the bare Hamiltonian H0, the spin-orbital coupling HSO and
the molecule-field coupling HMF .

H = H0 +HSO +HMF (3)

H0 |φk〉 = ~ωk |φk〉 (4)

HSO = S~, s.t. Skj = 〈φk|S |φj〉 , S0j = Sk0 = 0 (5)

HMF = −~µ · ~E = −µE, µkj = 〈φk|µ |φj〉 (6)

where E = EIR + EV UV . Write the wave function as:

|ψ(t)〉 = ã0(t) |φ0〉+
∑
k 6=0

ãk(t) |φk〉 (7)
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where |φ0〉 is the neutral ground state and |φi〉’s are excited/ionic states. Substitute (3) and (7) into
the Schrödinger equation i~ ∂

∂t |ψ〉 = H |ψ〉 and apply (4) and (5):

i~ ˙̃a0(t) |φ0〉+ i~
∑
k 6=0

˙̃ak(t) |φk〉 = (~ω0 − µE)ã0(t) |φ0〉+
∑
k 6=0

(~ωk − µE + S~)ãk(t) |φk〉 (8)

To project onto eigenstates by left-multiplying by eigen-bra 〈φk|:

˙̃a0(t) = −iω0ã0 + i
∑
k 6=0

µ0k
~

(EV UV + EIR)ãk (9)

˙̃ak 6=0(t) = −iωkãk + i
µk0
~

(EV UV + EIR)ã0 + i
∑
j 6=k

µkj
~
EIRãj − i

∑
j 6=k

Skj ãj (10)

Now let ãk(t) = ak(t)e
−iωkt (this is equivalent to going to the interaction picture) and get:

ȧ0(t) =
i

2~
∑
k 6=0

µ0k[EV UV (t)eiωV UV t + 2EIRcos(ωIRt)]ak(t)e−iωk0t (11)

ȧk 6=0 =
i

2~
µk0[EV UV (t)e−iωV UV t + 2EIRcos(ωIRt)]a0(t)e−iω0kt (12)

+
i

~
∑
j 6=k

µkjEIRcos(ωIRt)aj(t)e−iωjkt

− i
∑
j 6=k

Skjaj(t)e
−iωjkt

where

ωkj = ωk − ωj (13)

We have dropped fast-rotating terms, E(t)e±iωV UV t, since we have set ωV UV ≈ ωko.
Here, states |φk〉’s are eigenstates of H0. Skj is a complex matrix. The final (after the pulse) Hamil-

tonian is H0 + HSO. To obtain the populations in the final eigenstates, one first diagonalizes the final
Hamiltonian P−1(H0 +HSO)P = D to obtain matrix P , then performs a change of basis, a 7→ P−1a.

3 Adiabatic Basis

The total Hamiltonian consists of 3 parts, the bare Hamiltonian H0, the spin-orbital coupling HSO and
the molecule-field dipole-coupling HMF . Working in the eigenspace of H0 +HSO:

H = H0 +HSO +HMF (14)

HMF = −~µ · ~E (15)

(H0 +HSO) |φi〉 = ~ωi |φi〉 (16)

Write the wave function as:

|ψ(t)〉 = ã0(t) |φ0〉+
∑
i 6=0

ãi(t) |φi〉 (17)



where |φ0〉 is the neutral ground state and |φi〉’s are excited/ionic states. Substitute (14) and (17) into
Schrödinger equation i~ ∂

∂t |ψ〉 = H |ψ〉 and project onto eigenstates:

˙̃a0(t) = −iω0ã0 +
∑
i 6=0

(EV UV + EIR)ãi (18)

˙̃ai 6=0(t) = −iωiãi + i
µi0
~

(EV UV + EIR)ã0 + i
∑
j 6=i

µij
~
EIRãj (19)

Now let ãi(t) = ai(t)e
−iωit and get:

ȧ0(t) =
i

2~
∑
i 6=0

µ0i[EV UV (t)eiωV UV t + 2EIRcos(ωIRt)]ai(t)e−iωi0t (20)

ȧi 6=0 =
i

2~
µi0[EV UV (t)e−iωV UV t + 2EIRcos(ωIRt)]a0(t)e−iω0it (21)

+
i

~
∑
j 6=i

µijEIRcos(ωIRt)aj(t)e−iωjit

where

ωij = ωi − ωj (22)

We have dropped fast-rotating terms, E(t)e±iωV UV t, since we have set ωV UV ≈ ωio.


