Introduction to covariance analysis technique – in contrast to coincidence analysis

Chuan Cheng

2021/09/14

- Multiple particles coincidence
- multiple dimensional measurements

$$i^{+}: p_{x}, p_{y}, p_{z} \left(\frac{m}{q}\right)$$
$$e^{-}: p_{x}, p_{y}$$

1. Power of coincidence analysis

Photoion correlations arised from multi-ionization

9/15/2021

Cheng, Chuan, et al. "Momentum-resolved above-threshold ionization of deuterated water." *Physical Review A* 102.5 (2020): 052813 Howard, A. J., et al. "Strong-field ionization of water: Nuclear dynamics revealed by varying the pulse duration." *Physical Review A* 103.4 (2021): 043120.

4

1. Power of coincidence analysis – coincidence power for covariance price

- Coin vs covar analysis ٠ in ion-ion events
- Boost factor = ٠ 2days/30mins ≈ 100

Allum, Felix, et al. "Multi-Particle Three-Dimensional Covariance Imaging:"Coincidence" Insights into the Many-Body Fragmentation 9/15/2021 of Strong-Field Ionized D2O." The Journal of Physical Chemistry Letters 12 (2021): 8302-8308.

5

1. Power of coincidence analysis – coincidence power for covariance price

9/15/2021

Allum, Felix, et al. "Multi-Particle Three-Dimensional Covariance Imaging:"Coincidence" Insights into the Many-Body Fragmentation of Strong-Field Ionized D2O." *The Journal of Physical Chemistry Letters* 12 (2021): 8302-8308.

- Coincidence analysis
- Agreement between coincidence and covariance

why?

- Expectation of coincidence (math)
- Constraints in speed

• The yield of (e, i_1) events should follow:

• The yield of (e, i_1) events should follow:

In the exp, the data (ionization event) may fluctuate following Poisson distribution:

Shot #	e-	H+
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	3	3
7	1	1
8	0	0

• In reality, there are more fragments (different events) in each shot

	Shot #	e-	H+	0+	OH+	H2O+	
	1	3(1)	1	1	0	1	
	2	1 <mark>(0)</mark>	0	0	0	1	
	3	1(1)	1	0	0	0	
	4	7(1)	1	1	0	5	
	5	3 <mark>(0)</mark>	0	0	1	2	
	6	9 <mark>(3</mark>)	3	0	2	4	
	7	7(1)	1	1	2	3	
	8	7 <mark>(0)</mark>	0	0	0	7	

9/15/2021

Mikosch, Jochen, and Serguei Patchkovskii. "Coincidence and covariance data acquisition in photoelectron and-ion spectroscopy. II. Analysis and applications." *Journal of Modern Optics* 60.17 (2013): 1439-1451.

9/15/2021

Mikosch, Jochen, and Serguei Patchkovskii. "Coincidence and covariance data acquisition in photoelectron and-ion spectroscopy. II. Analysis and applications." *Journal of Modern Optics* 60.17 (2013): 1439-1451.

- Typical acquisition times while keep low sys error:
- 1. Coincidence for (*e*, *i*) takes ~ 1hr
- 2. Coincidence for (2e, 2i) takes ~ 10 days
- Solutions:
- 1. Go for higher repetition rate -> 100kHz (currently 1kHz) -> more shots per time
- 2. Go for clever analysis -> covariance analysis

Shot #	e-	H+	0+	OH+	H2O+	•••
1	3(1)	1	1	0	1	
2	1 <mark>(0)</mark>	0	0	0	1	
3	1(1)	1	0	0	0	
4	7(1)	1	1	0	5	
5	3 <mark>(0)</mark>	0	0	1	2	
6	9 <mark>(3)</mark>	3	0	2	4	
7	7(1)	1	1	2	3	
8	7 <mark>(0)</mark>	0	0	0	7	

- Coincidence analysis
- Agreement between coincidence and covariance

- Expectation of coincidence (math)
- Constraints in speed

- Expectation of covariance (math)
- Example of ToF-ToF

3. Carry out covariance – brief math Poisson distribution

• For Poisson distribution, the expectation values are:

•
$$P(N) = \frac{\lambda^{N}}{N!}e^{-\lambda}$$
, $P(N = 1) = \lambda e^{-\lambda}$
• $\langle N \rangle = \sum NP(N) = \sum N * \frac{\lambda^{N}}{N!}e^{-\lambda} = \lambda$
• $\langle N^{2} \rangle = \sum N^{2}P(N) = \sum N^{2} * \frac{\lambda^{N}}{N!}e^{-\lambda} = \lambda^{2} + \lambda$
• $Cov(N,N) = Var(N) = \langle N^{2} \rangle - \langle N \rangle^{2} = \lambda$

Mikosch, Jochen, and Serguei Patchkovskii. "Coincidence and covariance data acquisition in photoelectron and-ion spectroscopy. I. Formal theory." *Journal of Modern Optics* 60.17 (2013): 1426-1438.

3. Carry out covariance – brief math

$$Cov(N_M, N_E) = \langle N_M N_E \rangle - \langle N_M \rangle \langle N_E \rangle$$

= $P_1 v_0 + \sigma^2 v_0^2 (P_1 + P_2) (P_1 + P_3)$.
$$P_1 = f(M) f_M(E) \xi_i \xi_e$$

Term proportional to fluctuation.
For our laser it is small (~2%).

$$w^{(t)}(M, E) = f(M) f_M(E) p,$$

$$p = \xi_i \xi_e v_0 e^{-q},$$

$$q = v_0 (\xi_i + \xi_e - \xi_i \xi_e)$$

VS

3. Carry out covariance – simulation

9/15/2021 Mikosch, Jochen, and Serguei Patchkovskii. "Coincidence and covariance data acquisition in photoelectron and-ion spectroscopy. II. Analysis and applications." *Journal of Modern Optics* 60.17 (2013): 1439-1451.

18

$$Cov(N^{a}, N^{b}) \stackrel{\text{def}}{=} \langle N^{t_{1}}N^{t_{2}} \rangle - \langle N^{t_{1}} \rangle \langle N^{t_{2}} \rangle$$

$$i \text{ denotes shot number} \qquad = \frac{\Sigma N_{i}^{t_{1}}N_{i}^{t_{2}}}{Shots} - \frac{\Sigma N_{i}^{t_{1}}\Sigma N_{i}^{t_{2}} - \Sigma N_{i}^{t_{1}}N_{i}^{t_{2}}}{Shots(Shots - 1)}$$

$$= \frac{\Sigma N_{i}^{t_{1}}N_{i}^{t_{2}}}{Shots - 1} - \frac{\Sigma N_{i}^{t_{1}}\Sigma N_{i}^{t_{2}}}{Shots(Shots - 1)}$$

$$\approx \frac{\Sigma N_{i}^{t_{1}}N_{i}^{t_{2}}}{Shots} - \frac{\Sigma N_{i}^{t_{1}}\Sigma N_{i}^{t_{2}}}{Shots^{2}} \qquad \text{Goal is to compute these two terms summed over } i$$

Language of computing the fluctuation

$$= \langle (N^{t_1} - \langle N^{t_1} \rangle) (N^{t_2} - \langle N^{t_2} \rangle) \rangle$$

$$Cov(N^{a}, N^{b}) = \langle N^{t_{1}}N^{t_{2}} \rangle - \langle N^{t_{1}} \rangle \langle N^{t_{2}} \rangle$$

$$= \frac{\Sigma N_i^{t_1} N_i^{t_2}}{Shots} - \frac{\Sigma N_i^{t_1} \Sigma N_i^{t_2} - \Sigma N_i^{t_1} N_i^{t_2}}{Shots(Shots - 1)}$$
$$= \frac{\Sigma N_i^{t_1} N_i^{t_2}}{Shots - 1} - \frac{\Sigma N_i^{t_1} \Sigma N_i^{t_2}}{Shots(Shots - 1)}$$
$$\approx \frac{\Sigma N_i^{t_1} N_i^{t_2}}{Shots} - \frac{\Sigma N_i^{t_1} \Sigma N_i^{t_2}}{Shots^2}$$

3. Carry out covariance – diagonal: t1 = t2 = t

$$Cov(N^{(a)}, N^{(a)}) = \langle N^{t_1} N^{t_2} \rangle - \langle N^{t_1} \rangle \langle N^{t_2} \rangle$$
$$= \frac{\Sigma(N_i^t)^2}{Shots} - \frac{\Sigma N_i^t \Sigma N_i^t - \Sigma(N_i^t)^2}{Shots(Shots - 1)}$$
$$= \frac{\Sigma(N_i^t)^2}{Shots - 1} - \frac{\Sigma N_i^t \Sigma N_i^t}{Shots(Shots - 1)}$$
Also counting identical pairs

An event rate is λ , produces k fragments that has identical detection efficiency η :

$$\langle N \rangle = \lambda k \eta$$
$$Cov(N, N) = \lambda (2C_k^2 \eta^2 + k \eta)$$

Contribution of recounting

$$\begin{array}{c} Cov(N^{(a)}, N^{(a)}) \\ Cov(N^{(a)}, N^{(b)}) \end{array} \xrightarrow{\hspace{1cm}} Cov(N^{(a)}, N^{(a)}) - \langle N^{(a)} \rangle \\ Cov(N^{(a)}, N^{(b)}) - \langle N^{(a)} \cap N^{(b)} \rangle \end{array}$$

 $Cov(N^a, N^b) > 0$ $Cov(N^a, N^b) - \langle N^a \cap N^b \rangle > 0$ Diagonal 5.8 5.8 5.6 Negative 5.6 5.4 5.4 Soft (ns) 2.2 ToF (ns) **4.8** 4.8 **4.6** 4.6

5.5

5

ToF (ns)

4.4

4.5

5.5

6

5

ToF (ns)

•

4.4

4.5

3. Carry out covariance – negative parts of covariance

3. Carry out covariance – negative parts of covariance

$$p(N) = \begin{cases} 1 - p = p_1(0) & N = 0\\ p = \sum_{n \ge 1} p_1(n) & N = 1 \end{cases}$$

And the related statistics are:

Any imaging-centroiding detector will have this problem

- Coincidence analysis
- Agreement between coincidence and covariance

4. More about covariance – matrix

- $Cov(N^{i_1}, N^{i_2})$
- Matrix of covariance
- $Cov(N^{i_1:t_1}, N^{i_2:t_2})$ $N^{i_1} = \sum_{t_1} N^{i_1:t_1}$
- Other observables like x, y

$$\mathbf{X}_{\mathbf{X}\mathbf{X}} = \operatorname{cov}[\mathbf{X}, \mathbf{X}] = \mathrm{E}[(\mathbf{X} - \mu_{\mathbf{X}})(\mathbf{X} - \mu_{\mathbf{X}})^{\mathrm{T}}] = \mathrm{E}[\mathbf{X}\mathbf{X}^{T}] - \mu_{\mathbf{X}}\mu_{\mathbf{X}}^{T}$$
 (Eq.1)

4. More about covariance – momentum correlation

4. More about covariance – momentum correlation

4. More about covariance – $Cov(N_{xy}, N)$

Particle 1 choose CO^+/DCO^+ , look at its xy image Particle 2 choose D^+ , look at its sum yield

$$\sim Cov(N^{CO^+/DCO^+:xy}, N^{D^+})$$

Particle 1 choose CO^+/DCO^+ , look at its *sum yield* Particle 2 choose D^+ , look at its *xy* image

 $Cov(N^{CO^+/DCO^+}, N^{D^+:xy})$

•
$$p_1 + p_2 = 0$$

- $KE_1: KE_2 = m_2: m_1$
- 2-body dissociation
- Angular distribution (alignment)

- vague angular distribution
- No clear momentum conservation •
- Has to do 3-body covariance •

4. More about covariance – compared to coincidence

4. More about covariance – related ideas

- The pressure should be proportional to the event rate so $Cov(N_e(t), P) \propto \langle N_e \rangle$?
- For a pump probe system like UV-VUV, would it be possible if: $Cov(N_e(t), I_{UV}I_{VUV}) \propto \langle N_e \rangle$ assuming $N_e(t) \propto I_{UV}I_{VUV}$?
- Use ion counts together with photoelectrons
- Partial covariance may help clean some noise as well

• Thanks for joining. Any thoughts or questions?

9/15/2021

- Coincidence analysis
- Agreement between coincidence and covariance

9/15/2021

Some reading materials

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.011401 https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.053424 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.073005 https://aip.scitation.org/doi/full/10.1063/1.4947551 https://aip.scitation.org/doi/full/10.1063/1.5041381 https://pubs.rsc.org/en/content/articlehtml/2020/fd/d0fd00115e https://www.nature.com/articles/s42004-020-0320-3 https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.053418

Mainly focus on the following papers: https://www.tandfonline.com/doi/full/10.1080/09500340.2013.839837 https://www.tandfonline.com/doi/full/10.1080/09500340.2013.839840

Appendix 3: ToFToF computation


```
for ii = 1:1:length(trigindex) - 1
for jj1 = trigindex(ii):trigindex(ii + 1) - 1
for jj2 = trigindex(ii):trigindex(ii + 1) - 1
ToFToF(ToFindexes(jj1),ToFindexes(jj2)) = ToFToF(ToFindexes(jj1),ToFindexes(jj2)) + 1;
end
end
end
```

- Poisson distribution and multiple events
- Event n follows Poisson distribution:

•
$$P(N_n) = \frac{\lambda_n^{N_n}}{N_n!} e^{-\lambda_n}$$

• Simple calculation shows that, summing up all m events to get everything $N = N_1 + N_2 + ... + N_m$, N follows:

•
$$P(N) = \frac{\lambda^N}{N!} e^{-\lambda}$$
 where $\lambda = \lambda_1 + \lambda_2 + ... + \lambda_m$

• Which tells us that: everything is Poisson style.

• For Poisson distribution, the expectation value is:

$$< N > = \sum NP(N) = \sum N * \frac{\lambda^N}{N!} e^{-\lambda} = \lambda$$

$$< N^2 > = \sum N^2 P(N) = \sum N^2 * \frac{\lambda^N}{N!} e^{-\lambda} = \lambda^2 + \lambda$$

$$< N^3 > = \sum N^3 P(N) = \sum N^3 * \frac{\lambda^N}{N!} e^{-\lambda} = \lambda^3 + 3\lambda^2 + \lambda$$

$$\sqrt{Var(N)} = \sqrt{<(N - < N >)^2} = \sqrt{ - < N >^2} = \sqrt{\lambda}$$

$$< \frac{}{\sqrt{Var(N)}} = \sqrt{\lambda}$$

- Another view of the covariance: fluctuation between two particles
- Imagine our detection efficiency is 100% for both ele and ion.

•
$$Cov(N_e, N_M) = Cov(N_{M1} + N_{M2} + ..., N_M) = Cov(N_M, N_M) = N_M$$

Expand the sources of electrons: with different ions

Nature of Poisson style distribution

Nature of irrelevant events the covariance calculation. Note 1 ionization is not going to generate so many different ions!

- Another view of the covariance: fluctuation between two particles
- Imagine our detection efficiency is 100% for both ele and ion.

•
$$Cov(N_e, N_M) = Cov(N_{M1} + N_{M2} + ..., N_M) = Cov(N_M, N_M) = N_M$$

Note that with the help of N_M the N_e has been filtered out to only include events involve N_M!!

•
$$Cov(\xi_e N_e, \xi_i N_M) = \dots = Cov(\xi_e N_M, \xi_i N_M) = \xi_e \xi_i N_M$$

1. Strong of coincidence

- 0. the multiple particle nature of the measurement
- 1. MRATI
- 2. short VS long
- 3. example of covariance to fit coincidence

2. Coincidence expectation

- 1. from intuition
- 2. from real math
- 3. the boundary -> acquisition time (stat table) -> MRI and covariance

3. Carry out covariance

- 1. covar math brief
- 2. covar expectation plot
- 3. example: ToFToF

4. More about covariance

- 1. different covar (ToFToF, Nnxy, NxNy, betaKER) speed and back to coincidence
- 2. possible covar params/apps UV with ions or laser intensity
- 3. covar constraints** -- comparison and speed boost math