Introduction to covariance analysis technique - in contrast to coincidence analysis

Chuan Cheng
2021/09/14

- Multiple particles coincidence
- multiple dimensional measurements

$$
\begin{gathered}
i^{+}: p_{x}, p_{y}, p_{z}\left(\frac{m}{q}\right) \\
e^{-}: p_{x}, p_{y}
\end{gathered}
$$

1. Power of coincidence analysis

1. Power of coincidence analysis

Photoion correlations arised from multi-ionization

Photoelectron in coincidence with different ions

Neutral state (AB)

Cheng, Chuan, et al. "Momentum-resolved above-threshold ionization of deuterated water." Physical Review A 102.5 (2020): 052813 Howard, A. J., et al. "Strong-field ionization of water: Nuclear dynamics revealed by varying the pulse duration." Physical Review

1. Power of coincidence analysis coincidence power for covariance price

- Coin vs covar analysis in ion-ion events
- Boost factor = 2days/30mins ≈ 100

1. Power of coincidence analysis coincidence power for covariance price

- Coincidence analysis
- Agreement between coincidence and covariance

- Expectation of coincidence (math)
- Constraints in speed

2. Expectation in coincidence analysis

- The yield of $\left(e, i_{1}\right)$ events should follow:

Normalized channel branching ratio

2. Expectation in coincidence analysis

- The yield of $\left(e, i_{1}\right)$ events should follow:

$$
\begin{aligned}
w^{(t)}(M, E) & =f(M) f_{M}(E) p, \\
p & =\xi_{i} \xi_{e} v_{0} \mathrm{e}^{-q}, \\
q & =v_{0}\left(\xi_{i}+\xi_{e}-\xi_{i} \xi_{e}\right)
\end{aligned}
$$

Normalized channel branching ratio

VS $w_{\text {coin }}=v_{0} * f\left(e, i_{1}\right) * \xi_{e} \xi_{i 1} \longleftarrow$ Detection efficiency for electrons and ions

Rate of all events

2. Expectation in coincidence analysis

- In the exp, the data (ionization event) may fluctuate following Poisson distribution:

Shot \#	e-	$\mathrm{H}+$
1	1	1
2	0	0
3	1	1
4	1	1
5	0	0
6	3	3
7	1	1
8	0	0
\ldots	\ldots	\ldots

2. Expectation in coincidence analysis

- In reality, there are more fragments (different events) in each shot

Shot \#	e-	H+	O+	$\mathrm{OH}+$	$\mathrm{H} 2 \mathrm{O}+$	\ldots
1	$3(1)$	1	1	0	1	\ldots
2	$1(0)$	0	0	0	1	\ldots
3	$1(1)$	1	0	0	0	\ldots
4	$7(1)$	1	1	0	5	\ldots
5	$3(0)$	0	0	1	2	\ldots
6	$9(3)$	3	0	2	4	\ldots
7	$7(1)$	1	1	2	3	\ldots
8	$7(0)$	0	0	0	7	\ldots
\ldots						

2. Expectation in coincidence analysis

$$
w(M, E)=\text { true }+ \text { false }=w^{(t)}(M, E)+w^{(f)}(M, E)
$$

- All = true + false
- Event rate -> intermediate v_{0}

$$
\begin{aligned}
w^{(t)}(M, E) & =f(M) f_{M}(E) p, \\
p & =\xi_{i} \xi_{e} v_{0} \mathrm{e}^{-q}, \\
q & =v_{0}\left(\xi_{i}+\xi_{e}-\xi_{i} \xi_{e}\right)
\end{aligned}
$$

2. Expectation in coincidence analysis

- All = true + false
- Event rate -> intermediate ν_{0}
- Sys error -> small v_{0}

$$
\begin{aligned}
w^{(t)}(M, E) & =f(M) f_{M}(E) p \\
p & =\xi_{i} \xi_{e} v_{0} \mathrm{e}^{-q} \\
q & =v_{0}\left(\xi_{i}+\xi_{e}-\xi_{i} \xi_{e}\right)
\end{aligned}
$$

$$
R_{\text {sys }}=\frac{\text { false }}{\text { all }}=\frac{w^{(f)}(M, E)}{w(M, E)}
$$

$$
w(M, E)=\text { true }+ \text { false }=w^{(t)}(M, E)+w^{(f)}(M, E)
$$

2. Expectation in coincidence analysis

- Typical acquisition times while keep low sys error:
- 1. Coincidence for (e, i) takes $\sim 1 \mathrm{hr}$
- 2. Coincidence for ($2 e, 2 i$) takes ~ 10 days

Shot \#	e-	$\mathrm{H}+$	$\mathrm{O}+$	$\mathrm{OH}+$	$\mathrm{H} 2 \mathrm{O}+$	\ldots
1	$3(1)$	1	1	0	1	\ldots
2	$1(0)$	0	0	0	1	\ldots
3	$1(1)$	1	0	0	0	\ldots
4	$7(1)$	1	1	0	5	\ldots
5	$3(0)$	0	0	1	2	\ldots
\mathbf{Z} Z	$9(3)$	3	0	2	4	\ldots
7	$7(1)$	1	1	2	3	\ldots
8	$7(0)$	0	0	0	7	\ldots
\ldots						

- Solutions:
- 1. Go for higher repetition rate -> 100 kHz (currently 1 kHz) -> more shots per time
- 2. Go for clever analysis -> covariance analysis
- Coincidence analysis
- Agreement between coincidence and covariance

- Expectation of coincidence (math)
- Constraints in speed
- Expectation of covariance (math)
- Example of ToF-ToF

3. Carry out covariance - brief math Poisson distribution

- For Poisson distribution, the expectation values are:
- $P(N)=\frac{\lambda^{N}}{N!} e^{-\lambda}, P(N=1)=\lambda e^{-\lambda}$
- $\langle N\rangle=\sum N P(N)=\sum N * \frac{\lambda^{N}}{N!} e^{-\lambda}=\lambda$

$$
\begin{aligned}
w^{(t)}(M, E) & =f(M) f_{M}(E) p \\
p & =\xi_{i} \xi_{e} v_{0} \mathrm{e}^{-q}, \\
q & =v_{0}\left(\xi_{i}+\xi_{e}-\xi_{i} \xi_{e}\right)
\end{aligned}
$$

- $\left\langle N^{2}\right\rangle=\sum N^{2} P(N)=\sum N^{2} * \frac{\lambda^{N}}{N!} e^{-\lambda}=\lambda^{2}+\lambda$
- $\operatorname{Cov}(N, N)=\operatorname{Var}(N)=\left\langle N^{2}\right\rangle-\langle N\rangle^{2}=\lambda$

3. Carry out covariance - brief math

$$
P_{1}=f(M) f_{M}(E) \xi_{i} \xi_{e}
$$

Term proportional to fluctuation.
For our laser it is small ($\sim 2 \%$).

$$
\begin{aligned}
w^{(t)}(M, E) & =f(M) f_{M}(E) p \\
p & =\xi_{i} \xi_{e} \nu_{0} \mathrm{e}^{-q} \\
q & =v_{0}\left(\xi_{i}+\xi_{e}-\xi_{i} \xi_{e}\right)
\end{aligned}
$$

VS
$w_{\text {covar }}$

3. Carry out covariance - simulation

- All = true + false
- Event rate -> the higher v_{0} the better!!
- Sys error -> large v_{0} !!
$w(M, E)=$ true + false $=w^{(t)}(M, E)+w^{(f)}(M, E)$

$$
R_{\text {sys }}=\frac{\text { false }}{\text { all }}=\frac{w^{(f)}(M, E)}{w(M, E)}
$$

3. Carry out covariance - e.g. ToFToF

$$
\begin{aligned}
& \operatorname{Cov}\left(N^{a}, N^{b}\right) \stackrel{\operatorname{def}}{=}\left\langle N^{t_{1}} N^{t_{2}}\right\rangle-\left\langle N^{t_{1}}\right\rangle\left\langle N^{t_{2}}\right\rangle \\
& i \text { denotes shot number }=\frac{\Sigma N_{i}^{t_{1}} N_{i}^{t_{2}}}{\operatorname{Shots}}-\frac{\Sigma N_{i}^{t_{1}} \Sigma N_{i}^{t_{2}}-\Sigma N_{i}^{t_{1}} N_{i}^{t_{2}}}{\operatorname{Shots}(\operatorname{Shots}-1)} \\
&=\frac{\Sigma N_{i}^{t_{1}} N_{i}^{t_{2}}}{\operatorname{Shots}-1}-\frac{\Sigma N_{i}^{t_{1}} \Sigma N_{i}^{t_{2}}}{\operatorname{Shots}(\operatorname{Shots}-1)} \\
& \approx \frac{\Sigma N_{i}^{t_{1}} N_{i}^{t_{2}}}{\operatorname{Shots}}-\frac{\Sigma N_{i}^{t_{1}} \Sigma N_{i}^{t_{2}}}{\operatorname{Shots}^{2}} \quad \begin{array}{l}
\text { Goal is to compute these two } \\
\text { terms summed over } i
\end{array}
\end{aligned}
$$

3. Carry out covariance - e.g. ToFToF

> Language of computing the fluctuation

$$
=\left\langle\left(N^{t_{1}}-\left\langle N^{t_{1}}\right\rangle\right)\left(N^{t_{2}}-\left\langle N^{t_{2}}\right\rangle\right)\right\rangle
$$

$$
\operatorname{Cov}\left(N^{a}, N^{b}\right)=\left\langle N^{t_{1}} N^{t_{2}}\right\rangle-\left\langle N^{t_{1}}\right\rangle\left\langle N^{t_{2}}\right\rangle
$$

$$
\begin{aligned}
& =\frac{\Sigma N_{i}^{t_{1}} N_{i}^{t_{2}}}{\operatorname{Shots}}-\frac{\Sigma N_{i}^{t_{1}} \Sigma N_{i}^{t_{2}}-\Sigma N_{i}^{t_{1}} N_{i}^{t_{2}}}{\operatorname{Shots}(\text { Shots }-1)} \\
& =\frac{\Sigma N_{i}^{t_{1}} N_{i}^{t_{2}}}{\text { Shots }-1}-\frac{\Sigma N_{i}^{t_{1}} \Sigma N_{i}^{t_{2}}}{\operatorname{Shots}(\text { Shots }-1)} \\
& \approx \frac{\Sigma N_{i}^{t_{1}} N_{i}^{t_{2}}}{\text { Shots }^{2}}-\frac{\Sigma N_{i}^{t_{1}} \Sigma N_{i}^{t_{2}}}{\text { Shots }^{2}}
\end{aligned}
$$

3. Carry out covariance - e.g. ToFToF

3. Carry out covariance - e.g. ToFToF

- Diagonal
- Negative

3. Carry out covariance - diagonal: $\mathrm{t} 1=\mathrm{t} 2=\mathrm{t}$

$$
\begin{aligned}
\operatorname{Cov}\left(N^{(a)}, N^{(a)}\right) & =\left\langle N^{t_{1}} N^{t_{2}}\right\rangle-\left\langle N^{t_{1}}\right\rangle\left\langle N^{t_{2}}\right\rangle \\
& =\frac{\Sigma\left(N_{i}^{t}\right)^{2}}{\operatorname{Shots}}-\frac{\Sigma N_{i}^{t} \Sigma N_{i}^{t}-\Sigma\left(N_{i}^{t}\right)^{2}}{\operatorname{Shots}(\text { Shots }-1)} \\
& =\frac{\Sigma\left(N_{i}^{t}\right)^{2}}{\operatorname{Shots}-1}-\frac{\Sigma N_{i}^{t} \Sigma N_{i}^{t}}{\operatorname{Shots}(\text { Shots }-1)}
\end{aligned}
$$

Also counting identical pairs

An event rate is λ, produces k fragments that has identical detection efficiency η :

$$
\begin{aligned}
\langle N\rangle & =\lambda k \eta \\
\operatorname{Cov}(N, N) & =\lambda\left(2 C_{k}^{2} \eta^{2}+k \eta\right)
\end{aligned}
$$

\uparrow
Contribution of recounting

3. Carry out covariance - e.g. ToFToF

- Diagonal
- Negative

$$
\operatorname{Cov}\left(N^{a}, N^{b}\right)-\left\langle N^{a} \cap N^{b}\right\rangle>0
$$

$$
\operatorname{Cov}\left(N^{a}, N^{b}\right)>0
$$

3. Carry out covariance - e.g. ToFToF

- Diagonal
- Negative

3. Carry out covariance - negative parts of covariance

$D^{+}: x-y, x-t, y-t$ plots

total counts
$=986710$
ToF $=[4.58,4.66]$
us
Mass $=$
$[1.57,2.23] a m u$
centering at
$1.95 a m u$

$$
-\sqrt{ } 2 \sqrt{\sqrt{2}} 16 \sqrt{ } 9 \sqrt{ } 4 \sqrt{ } 10 \quad \sqrt{ } 1 \sqrt{ } 4 \sqrt{ } 9 \sqrt{ } 16 \sqrt{ } 25
$$

$$
\mathrm{CO}^{+}, C D O^{+}, C D_{2} O^{+}: \mathrm{x}-\mathrm{y}, \mathrm{x}-\mathrm{t}, \mathrm{y} \text {-t plots }
$$

$=2170289$

total counts
$=2170289$
ToF $=[5.85,6.05]$
us
[26.1,32.6]amu
centering at
29.3amu

- Single ionization dissociation low KE
- $p_{1}+p_{2}=0$
- $K E_{1}: K E_{2}=$ $m_{2}: m_{1}$
- Overlapping hits issue

3. Carry out covariance - negative parts of covariance

$$
p(N)= \begin{cases}1-p=p_{1}(0) & N=0 \\ p=\Sigma_{n \geq 1} p_{1}(n) & N=1\end{cases}
$$

And the related statistics are:

$$
\begin{aligned}
\langle N\rangle & =p \\
\operatorname{Cov}(N, N) & =p(1-p) \\
\operatorname{Cov}(N, N)-\langle N\rangle & =-p^{2}
\end{aligned}
$$

- Any imaging-centroiding detector will have this problem

- Coincidence analysis
- Agreement between coincidence and covariance

- Expectation of coincidence (math)
- Constraints in speed
- Expectation of covariance (math)
- Example of ToF-ToF

- Other covariance, example of our data $\left(C_{2} O\right)$
- Related thoughts

4. More about covariance - matrix

From Wikipedia:

- $\operatorname{Cov}\left(N^{i_{1}}, N^{i_{2}}\right)$
- Matrix of covariance

The definition above is equivalent to the matrix equality
$\mathrm{K}_{\mathbf{X X}}=\operatorname{cov}[\mathbf{X}, \mathbf{X}]=\mathrm{E}\left[\left(\mathbf{X}-\mu_{\mathbf{X}}\right)\left(\mathbf{X}-\mu_{\mathbf{X}}\right)^{\mathrm{T}}\right]=\mathrm{E}\left[\mathbf{X} \mathbf{X}^{T}\right]-\mu_{\mathbf{X}} \mu_{\mathbf{X}^{T}} \quad$ (Eq.1)

- $\operatorname{Cov}\left(N^{i_{1}: t_{1}}, N^{i_{2}: t_{2}}\right)$
- $N^{i_{1}}=\sum_{t_{1}} N^{i_{1}: t_{1}}$
- Other observables like x, y

4. More about covariance - momentum correlation

Particle 1 choose D^{+}, look at its x direction Particle 2 choose $C O^{+} / D C O^{+}$, look at its x direction

4. More about covariance - momentum correlation

Particle 1 choose D^{+}, look at its x direction
Particle 2 choose D^{+}, look at its x direction

4. More about covariance $-\operatorname{Cov}\left(N_{x y}, N\right)$

Particle 1 choose $\mathrm{CO}^{+} / D C O^{+}$, look at its $x y$ image Particle 2 choose D^{+}, look at its sum yield

Particle 1 choose $\mathrm{CO}^{+} / \mathrm{DCO}^{+}$, look at its sum yield Particle 2 choose D^{+}, look at its $x y$ image
$\geq \operatorname{Cov}\left(N^{C O^{+} / D C O^{+}: x y}, N^{D^{+}}\right)$

- $p_{1}+p_{2}=0$
- $K E_{1}: K E_{2}=m_{2}: m_{1}$
- 2-body dissociation
- Angular distribution (alignment)

$$
\operatorname{Cov}\left(N^{C O^{+} / D C O^{+}}, N^{D^{+}: x y}\right)
$$

4. More about covariance - 3-body

 dissociation- vague angular distribution
- No clear momentum conservation

- Has to do 3-body covariance

4. More about covariance - compared to coincidence

4. More about covariance - related ideas

- The pressure should be proportional to the event rate so $\operatorname{Cov}\left(N_{e}(t), P\right) \propto\left\langle N_{e}\right\rangle$?
- For a pump probe system like UV-VUV, would it be possible if: $\operatorname{Cov}\left(N_{e}(t), I_{U V} I_{V U V}\right) \propto\left\langle N_{e}\right\rangle$ assuming $N_{e}(t) \propto I_{U V} I_{V U V}$?
- Use ion counts together with photoelectrons
- Partial covariance may help clean some noise as well
- Thanks for joining. Any thoughts or questions?

- Coincidence analysis
- Agreement between coincidence and covariance

- Expectation of coincidence (math)

- Expectation of covariance (math)
- Constraints in sp ed
- Example of ToF-ToF

Check out our paper:
ther covariance, example of our data $\left(\mathrm{CD}_{2} \mathrm{O}\right)$
Related thoughts
Allum, Felix, et al. "Multi-Particle Three-Dimensional Covariance Imaging:"Coincidence" Insights into the Many-Body Fragmentation of Strong-Field lonized D2O." The Journal of Physical Chemistry Letters 12 (2021): 8302-8308.

Some reading materials

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.011401 https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.053424 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.073005 https://aip.scitation.org/doi/full/10.1063/1.4947551 https://aip.scitation.org/doi/full/10.1063/1.5041381 https://pubs.rsc.org/en/content/articlehtml/2020/fd/d0fd00115e https://www.nature.com/articles/s42004-020-0320-3 https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.053418

Mainly focus on the following papers:
https://www.tandfonline.com/doi/full/10.1080/09500340.2013.839837 https://www.tandfonline.com/doi/full/10.1080/09500340.2013.839840

Appendix 1: CRATI

Appendix 3: ToFToF computation

```
\sum\mp@subsup{N}{i}{\mp@subsup{t}{1}{}}\mp@subsup{N}{i}{\mp@subsup{t}{2}{}}
for ii = 1:1:length(trigindex) - 1
    for jj1 = trigindex(ii):trigindex(ii + 1) - 1
    for jj2 = trigindex(ii):trigindex(ii + 1) - 1
        ToFToF(ToFindexes(jj1),ToFindexes(jj2)) = ToFToF(ToFindexes(jj1),ToFindexes(jj2)) + 1;
    end
    end
end
```


Appendix 4: more poisson

- Poisson distribution and multiple events
- Event n follows Poisson distribution:
- $P\left(N_{n}\right)=\frac{\lambda_{n}^{N_{n}}}{N_{n}!} e^{-\lambda_{n}}$
- Simple calculation shows that, summing up all m events to get everything $N=N_{1}+N_{2}+\ldots+N_{m}$, N follows:
- $P(N)=\frac{\lambda^{N}}{N!} e^{-\lambda}$ where $\lambda=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{m}$
- Which tells us that: everything is Poisson style.

Appendix 4: more poisson

- For Poisson distribution, the expectation value is:
$\cdot<N>=\sum N P(N)=\sum N * \frac{\lambda^{N}}{N!} e^{-\lambda}=\lambda$
$\cdot<N^{2}>=\sum N^{2} P(N)=\sum N^{2} * \frac{\lambda^{N}}{N!} e^{-\lambda}=\lambda^{2}+\lambda$
$\cdot<N^{3}>=\sum N^{3} P(N)=\sum N^{3} * \frac{\lambda^{N}}{N!} e^{-\lambda}=\lambda^{3}+3 \lambda^{2}+\lambda$
- $\sqrt{\operatorname{Var}(N)}=\sqrt{\left.\langle(N-<N\rangle)^{2}\right\rangle}=\sqrt{\left\langle N^{2}\right\rangle-\langle N\rangle^{2}}=\sqrt{\lambda}$
- $\frac{\langle N\rangle}{\sqrt{\operatorname{Var}(N)}}=\sqrt{\lambda}$

Appendix 4: more poisson

- Another view of the covariance: fluctuation between two particles
- Imagine our detection efficiency is 100% for both ele and ion.
$\cdot \operatorname{Cov}\left(N_{e}, N_{M}\right)=\operatorname{Cov}\left(N_{M 1}+N_{M 2}+\ldots, N_{M}\right)=\operatorname{Cov}\left(N_{M}, N_{M}\right)=N_{M}$

Nature of Poisson style distribution

Appendix 4: more poisson

- Another view of the covariance: fluctuation between two particles
- Imagine our detection efficiency is 100% for both ele and ion.
- $\operatorname{Cov}\left(N_{e}, N_{M}\right)=\operatorname{Cov}\left(N_{M 1}+N_{M 2}+\ldots, N_{M}\right)=\operatorname{Cov}\left(N_{M}, N_{M}\right)=N_{M}$

Note that with the help of $N _M$ the
N_e has been filtered out to only
include events involve N_M!!
$\cdot \operatorname{Cov}\left(\xi_{e} N_{e}, \xi_{i} N_{M}\right)=\cdots=\operatorname{Cov}\left(\xi_{e} N_{M}, \xi_{i} N_{M}\right)=\xi_{e} \xi_{i} N_{M}$

1. Strong of coincidence

- 0 . the multiple particle nature of the measurement
-1. MRATI
-2. short VS Iong
-3. example of covariance to fit coincidence

2. Coincidence expectation

-1. from intuition
-2. from real math
-3. the boundary \rightarrow acquisition time (stat table) \rightarrow MRI and covariance

3. Carry out covariance

-1. covar math brief

- 2. covar expectation plot
-3. example: ToFTOF

4. More about covariance

- 1. different covar (ToFToF, Nnxy, NxNy, betaKER) speed and back to coincidence
- 2. possible covar params/apps - UV with ions or laser intensity
-3. covar constraints** -- comparison and speed boost math

