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Adiabatic elimination in strong-field light-matter coupling
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We explore the validity of adiabatic elimination in the derivation of an essential-states representation of the
time-dependent Schrödinger equation in the presence of a strong laser field. We consider the elimination of
off-resonant states in generating an effective two-level description of the light-matter interaction, where the initial
and final states are two-photon resonant. The treatment is nonperturbative and can be generalized to N-photon
absorption.
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I. INTRODUCTION

In time-resolved spectroscopy and nonlinear optics, the
coupling between a strong-field laser pulse and the molecule
of interest takes center stage [1–3]. An important tool in
dealing with strong laser-molecule coupling is adiabatic elim-
ination (AE), which allows one to derive multiphoton Rabi
frequencies and dynamic Stark shifts, as well as describe
the laser-molecule interaction in terms of a small group of
essential states [4–17]. AE can also be applied in the calcu-
lation of multiphoton decay channels, such as the two-photon
decay of the hydrogen 2s state [18] or for coupling control in
waveguides [19] and is the starting point for developing more
accurate approximations for quantum computing simulations
[20–22].

If one considers the full time-dependent Schrödinger equa-
tion (TDSE) in the basis of field-free molecular states, then the
idea is to eliminate those intermediate molecular states which
do not play an important role in the dynamics—i.e., those
which are not significantly populated during the interaction
with the laser field. These states are so far off resonance
that any population that is transferred to the state is rapidly
transferred back to the initial state as the interaction switches
between stimulated absorption and emission at the detuning
frequency, � = ω0 − (Ei − E0), where Ei and E0 represent
the energies of the ground and intermediate states.

Our goal is to examine the validity of removing such far
off-resonant states in detail by comparing numerical integra-
tion of the TDSE with all states considered explicitly (exact
treatment) versus calculations where the off-resonant states
have been adiabatically eliminated. We show how cancellation
of errors enables accurate calculations with AE even when the
validity of the approximation is in question. This supports
the use of AE even for very short (i.e., few cycle) pulses
which do not fulfill the slowly varying envelope approxima-
tion (SVEA).

II. MODEL SYSTEM

In the following, we focus on a simple model system.
We divide the eigenstates of the field-free molecule into two
groups. An initial ground state, |ψg〉, and an excited state,
|ψe〉, which are n-photon resonant (Ee − Eg = nω in atomic
units), and all the other intermediate states, |ψi〉, of the system
which are off resonant but dipole coupled to both the initial
and final states. For our simulations, we restrict ourselves to a
model with two-photon transitions and one intermediate state.
These are illustrated in the bottom left corner of Fig. 1. Further
details can be found in the Appendixes. We ignore vibrations
here, but they have been included in a separate paper [23].

III. ADIABATIC ELIMINATION

The traditional formulation for AE is to assume a slowly
varying field envelope and large detuning of the intermedi-
ate state, such that the variation in the Rabi frequency, χ̇ ,
between i and g or e and i has to be much smaller than
the Rabi frequency, χ , times the detuning between g and
i, or e and i, �ig or �ei (i.e., χ̇/χ � �) [1,14]. Here we
revisit this approximation and calculate the errors that one
accumulates with AE when the approximation is not strictly
valid. We present a brief derivation of the TDSE with AE,
illustrating exactly what approximations are made to create
the adiabatically eliminated system. We start by writing the
time-dependent wave functions in terms of the field-free elec-
tronic eigenstates,

|�(t )〉 =
∑

n=g,e,i

cn(t )e−iωnt |ψn〉, (1)

where cn(t ) is the complex amplitude of the nth electronic
eigenstate, with n representing the ground state g, the excited
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FIG. 1. Populations as a function of time for a three-level system
with laser-induced coupling. Top panel: Laser intensity versus time.
Bottom panel: Populations versus time. Solid curves correspond to
the full system and dotted curves correspond to the AER system.
The inset shows the energy-level diagram for the three-level system.

state e, or any intermediate states i. The TDSE is then

iċm =
∑

n=g,e,i

cn(t )e−iωmnt 〈ψm|Hint|ψn〉, (2)

where ωmn ≡ ωm − ωn and Hint is the Hamiltonian of the
system including the molecule-field interaction.

Up to this point, the TDSE is general but not particularly
useful because of the large number of intermediate states that
are involved, leading to a potentially very large Hamiltonian
matrix. The idea in AE is to eliminate all of the states i
from the TDSE, while taking into account the role that they
play in generating multiphoton couplings and dynamic Stark
shifts. We focus here on an initial and final state which are
two-photon coupled. The extension to higher order couplings
is straightforward but tedious. As mentioned above, we focus
here on an initial and final state which are two-photon coupled
via a single intermediate state, i, understanding that this can
represent many states and that in general one needs to sum
over a large number of such states in the derivation to accu-
rately calculate the multiphoton couplings and Stark shifts.

Using Eq. (2), the TDSE for this system can be written as

iċg = ci(t )e+iωgit 〈�g|Hint|�i〉, (3a)

iċi = cg(t )e−iωgit 〈�i|Hint|�g〉,
+ ce(t )e−iωeit 〈�i|Hint|�e〉, (3b)

iċe = ci(t )e+iωeit 〈�e|Hint|�i〉, (3c)

where the coupling is given by

〈�n|Hint|�m〉 = − 1
2χnm(t )(e+iω0t + e−iω0t ), (4)

with χnm(t ) = μnmE (t ), where μnm is an element of the tran-
sition dipole moment matrix and E (t ) is the time-dependent

electric-field amplitude. We drop the explicit time dependence
of χnm for ease of notation.

When written out explicitly by plugging the coupling
[Eq. (4)] into Eqs. (3), the complex exponentials for the
molecule e±iωgit , e±iωeit and light e±iω0t combine such that we
can define the AE frequencies, ωg,e± ≡ ωg,ei ± ω0, and using
these rewrite Eqs. (3) as

iċg = ci(t )(−χgi

2
)(e+iωg+t + e+iωg−t ), (5a)

iċi = cg(t )(−χgi

2
)(e−iωg+t + e−iωg−t )

+ce(t )(−χei

2
)(e−iωe+t + e−iωe−t ), (5b)

iċe = ci(t )(−χei

2
)(e+iωe+t + e+iωe−t ). (5c)

The process of AE begins by directly integrating the
rapidly oscillating, off-resonant intermediate state [Eq. (5b)]:

ci(t ) = − 1

2i

∫ t

−∞
dt ′[cg(t ′)χgie

−iωg+t ′ + cg(t ′)χgie
−iωg−t ′

+ce(t ′)χeie
−iωe+t ′ + ce(t ′)χeie

−iωe−t ′]
,

= − 1

2i

∫ t

−∞
dt ′[g+ + g− + e+ + e−

]
. (6)

This leads to four separate integrals where we define the
integrands as g+, g−, e+, and e− based on the AE frequencies.
We can evaluate these four integrals by the usual integration
by parts:

∫
UdV = UV − ∫

V dU . If we take
∫

dt ′g− as an
example then U = χigcg(t ′) and dV = e−iωg−t , resulting in the
integral:

∫ t

−∞
dt ′g− = χigcg(t ′)

e−iωg−t ′

−iωg−

−
∫ t

−∞
dt ′ d

dt
[χigcg(t ′)]

e−iωg−t ′

−iωg−
. (7)

The usual approach to AE can be expressed in terms of
χ̇ie,g/χie,g � ωg,e± such that we can neglect the

∫
V dU term,

since it is an integral of a product of slowly and rapidly
varying terms. However, a more precise condition for AE
can be derived from Eq. (7) by performing integration by
parts a second time. The U term now contains a derivative,
U = d

dt χigcg(t ′), while the dV term remains the same, dV =
e−iωg−t , yielding:∫ t

−∞
dt ′g− = χigcg(t ′)

e−iωg−t ′

−iωg−
(8a)

+ d

dt
[χigcg(t ′)]

e−iωg−t ′

ω2
g−

(8b)

−
∫ t

−∞
dt ′ d2

dt2
[χigcg(t ′)]

e−iωg−t ′

ω2
g−

. (8c)

This approach now allows us to directly compare the differ-
ent terms in Eq. (7): (8a) and (8b). The approximation requires
that (8b) be much smaller than (8a), and assuming that the
second derivative of the envelope will vary even slower than
the first, (8c) can be neglected. Thus, the approximation can
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be written as∣∣∣∣ 1

χigcg(t )

(
dcg

dt
χig(t ) + dχig

dt
cg(t )

)∣∣∣∣ � |ωg−|, (9)

where an appropriate swap of g/e and +/− yield a similar
inequality for the other three AE frequencies.

Although similar to the traditional approximation, this re-
vised statement of the approximation contains an additional
term, which leads to cancellation of errors if the two terms
have different signs. We note that the sign of the terms can
also vary as a function of time since the derivative of the
Rabi frequency changes at the peak of the pulse and the state
coefficients are not always real and positive.

If Eq. (9) is satisfied, then the
∫

V dU term can be removed
from each of the four integrals, leaving us with the intermedi-
ate state written as

ci(t ) = −χgi

2
cg(t )

[
e−iωg+t

ωg+
+ e−iωg−t

ωg−

]

+ −χei

2
ce(t )

[
e−iωe+t

ωe+
+ e−iωe−t

ωe−

]
. (10)

Now we plug this equation [Eq. (10)] back into the differential
equations for cg(t ) and ce(t ), Eqs. (5a) and (5c), respectively.
The next step is to make the two-photon rotating wave approx-
imation (TPRWA) to eliminate the rapidly oscillating terms,
which is to say that any oscillation faster than the two-photon
detuning, �2 = ωeg − ω0, is removed. See the Appendixes for
the complete derivation continuing from Eq. (10). The system
resulting from AE + the TPRWA (AER) can thus be written
as a system of two coupled first-order differential equations:

iċg = cg(t )
χ2

gi

2

ωgi

ω2
gi − ω2

0

+ ce(t )
1

4

χgiχei

ωei − ω0
e−i�2t , (11a)

iċe = ce(t )
χ2

ei

2

ωei

ω2
ei − ω2

0

+ cg(t )
1

4

χeiχgi

ωgi + ω0
e+i�2t , (11b)

or more concisely in terms of the dynamic Stark shift ωS
g,e(t )

and the two-photon Rabi frequency �(t ):

iċg = cg(t )ωS
g (t ) + ce(t )�̃(t )e−i�2t ,

iċe = ce(t )ωS
e (t ) + cg(t )�(t )e+i�2t . (12)

To quantify the error associated with AE, we numerically
integrate the full system of equations given by Eqs. (5) (ex-
act solution), as well as the equations after AER given by
Eqs. (11). The results of these calculations are shown in Fig. 1.
The top panel shows the laser pulse intensity as a function
of time, where the pulse has a Gaussian profile with a peak
intensity of 2/3 TW/cm2 and pulse duration of 30 fs. The
bottom panel shows the state populations as a function of
time, where the population is given by Pn(t ) = |cn(t )|2. In
this panel, there is an inset showing the energy level dia-
gram where the one-photon detuning (� = Ei − Eg − ν0) is
200 THz. These parameters were chosen such that there was
a large population transfer to the excited state and that the
simulation would meet the standard adiabatic criteria as the
30-fs pulse sustains a bandwidth of ≈15 THz, which is much
less than the detuning. Full model parameters are given by
Table II.

FIG. 2. Adiabatic elimination using different pulse durations
while maintaining a constant pulse area. Pulse durations shown: 300
fs (top left), 30 fs (top right), 10 fs (bottom left), 3 fs (bottom right).

The solid curves of Fig. 1 show the solution to integrating
the full system Eqs. (5). As expected, the intermediate-state
population shows rapid oscillations with no population re-
maining in the state at the end of the pulse. This outcome
reflects the fact that the intermediate state acts as a mediator
between the ground and excited states, but has no lasting
effect. This circumstance forms the basis for AE, where we
eliminate the intermediate state and move its mediating effects
to the dynamic Stark shift and two-photon Rabi frequencies.

The dotted curves show the solution to the AER system
Eqs. (11) where the intermediate state has been adiabatically
eliminated. The agreement between the full system and the
AER system is quite good with a population error, (PFull

e −
PAER

e )/PFull
e , of only 2.5%.

IV. VALIDITY OF THE APPROXIMATION

We have found that AE works (producing relatively small
errors in comparison to integration of the full TDSE) even
when the SVEA is not strictly valid, as illustrated in Fig. 1.
Here, we examine the validity of the approximation in more
detail by testing its limits. In Fig. 2, we calculate the pop-
ulations of the states for four different pulse durations. The
intensity was adjusted to keep the pulse area constant for the
four simulations. In the top left panel, we show the results
for a 300-fs pulse, for which the SVEA is valid, given an
intermediate state detuning of 200 THz and a pulse envelope
bandwidth of less than 2 THz. The solutions to the full TDSE
and the AER equations overlap perfectly. As the pulse dura-
tion is decreased, the approximation becomes worse and we
see some accumulation of error in comparing the solutions to
the TDSE and the AER equations. However, the disagreement
between the TDSE and AER solutions remains rather small,
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even for a 10 fs pulse, where the SVEA is clearly violated.
Furthermore, the solutions are still relatively close even for the
dramatic case of a roughly single cycle pulse, which grossly
violates the SVEA.

So far, we have only discussed how the approximation
works in the case of varying pulse duration. A similar analysis
can be done by varying the intermediate state detuning, which
we show in Fig. 5. Looking at Eq. (9), one can show that the
approximation can be discussed in terms of either the pulse
duration (dictated by the pulse bandwidth for a transform
limited pulse) based on dχ/dt from the left hand side (LHS)
of the inequality or the one-photon detuning based on ωg,e±
from the right hand side (RHS) and that these are equivalent
pictures.

A more thorough analysis of the population error, given in
Fig. 6, shows that there is a smooth decrease in errors with
increasing pulse duration. This highlights the fact that there is
nothing special about the particular pulse durations discussed
here. AE works even when the envelope does not vary very
slowly compared to the central frequency.

V. INTERPRETATION

To understand why AE works so well, we need to take a
closer look at the approximation. The SVEA is essentially
equivalent to assuming that each term on the LHS of Eq. (9) is
smaller than the RHS. However, the errors associated with the
sum of the two terms can be small even when the SVEA is not
valid due to cancellation between the two terms. We return to
the integration by parts from Eq. (7), in particular, focusing on
the

∫
V dU term because this term describes the error in AE.

Expanding this term based on the product rule yields∫
(V dU )g− =

∫ t

−∞
dt ′ d

dt
[χigcg(t ′)]

e−iωg−t ′

−iωg−
, (13a)

=
∫ t

−∞
dt ′ e

−iωg−t ′

−iωg−

dχig

dt
cg(t ′)

+
∫ t

−∞
dt ′ e

−iωg−t ′

−iωg−

dcg(t ′)
dt

χig, (13b)

=
∫

(V dU )g−
1 +

∫
(V dU )g−

2 , (13c)

where this equation is representative of the other three terms
g+, e−, and e+. This expansion highlights the importance of
the product rule and gives us the first level of cancellation of
errors throughout the approximation.

To emphasize this cancellation of errors, we calculate each
contribution to the intermediate-state coefficient (all four UV
terms and all eight

∫
V dU terms) and use these to determine

each contribution to the excited-state coefficient [ce(t )] by
plugging each into the integral solving for the excited state:

ce(t ) = − 1

2i

∫ t

−∞
dt ′ci(t

′)χei(e
+iωe+t ′ + e+iωe−t ′

). (14)

For example, we insert ci(t ′) = ∫
(V dU )g−

1 into Eq. (14) to
determine this term’s contribution to the ce(t ). This term is
plotted in the upper left panel of Fig. 3 in black for the system
described in Fig. 1. We then calculate the contribution to ce(t )
from the remaining seven

∫
V dU terms which are plotted

FIG. 3. Excited-state coefficient contributions from the
∫

V dU
terms split by the product rule [RHS Eq. (13)] and normalized to
the total final excited state coefficient. The imaginary complement is
given by Fig. 7.

as a function of time in Fig. 3. For clarity, each contribution
to ce(t ) is normalized to the total ce(t ) used to calculate the
population.

Figure 3 is divided into four panels marked g− (top left),
e+ (top right), g+ (bottom left), and e− (bottom right). These
correspond to the

∫
V dU term for the four integrals given by

Eqs. (6). The black and grey curves represent this integral sep-
arated via the product rule as shown in the example Eq. (13),
where the colored curves represent the sum of these two terms.

The top two panels (g− and e+) show little contribution
due to

∫
(V dU )1 (i.e., the derivative of the field) and are

thus dominated by the second term (the derivative of the
coefficient) but this term is quite small, being less than 1%.
We can attribute this to the fast oscillation frequencies ωg− =
−1000 THz and ωe+ = +600 THz which lead to very little
population transfer.

The bottom two panels (g+ and e−) tell a much more
interesting story. Both show a 2% error due to the dc/dt term,
but this is then canceled by the dχ/dt term, yielding a reduced
total error of ≈1%.

The discussion above highlights a first level of error can-
cellation. As shown in Eqs. (6), the four colored curves in
Fig. 3 must also be summed. Figure 4 reproduces these four
curves and additionally shows their sum as the black dashed
line. Here, it is quite striking to see that the e+ term has the
opposite sign compared to the other three, which introduces a
further cancellation of errors. This sign difference arises due
to the denominator in the

∫
V dU . The denominator is the AE

frequency, which is ωg− in Eq. (13). The four AE frequen-
cies are then ωg− = −1000 THz, ωg+ = ωe− = −200 THz,
and ωe+ = +600 THz. The e+ carries the opposite sign to
the others, providing additional cancellation of errors in AE.
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FIG. 4. Excited-state coefficient contributions from the
∫

V dU
terms [RHS Eq. (13)] collected from four panels of Fig. 3 normalized
to the total final excited-state coefficient. The imaginary complement
is given by Fig. 8.

Furthermore, we see that there is cancellation in time due to
the change in sign of the derivative of the Rabi frequency,
as discussed below Eq. (9). This cancellation in time is even
more pronounced in the imaginary part of the coefficients, as
shown in Figs. 7 and 8. These multiple levels of cancellation
reduce the total error due to AE, and allow calculations that
make use of AE to yield accurate results even when the tradi-
tional statement of the approximation is not strictly valid.

VI. CONCLUSION

AE often works much better than expected based on the
traditional formulation of the approximation in terms of the
SVEA. To understand why, we have examined the approxi-
mation in greater detail, uncovering multiple cancellations of
errors. This provides a deeper understanding of the approx-
imation and validates the application of AE even when the
SVEA fails.
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APPENDIX A: ADIABATIC ELIMINATION
FULL DERIVATION

Here we provide some details on the derivation of Eqs. (11)
based on the expression for the intermediate state given by
Eq. (10). This includes the TPRWA.

We start from the expression for the intermediate state,
ci(t ), that we arrived at in Eq. (10) from the main text:

ci(t ) = −χgi

2
cg(t )

[
e−iωg+t

ωg+
+ e−iωg−t

ωg−

]

+−χei

2
ce(t )

[
e−iωe+t

ωe+
+ e−iωe−t

ωe−

]
. (A1)

We insert Eq. (A1) into the differential equations from Eqs. (5)
such that they can be reduced to two coupled differential
equations given by

iċg = Aggcg(t ) + Agece(t ), (A2a)

iċe = Aegcg(t ) + Aeece(t ), (A2b)

where

Agg = χgiχgi

4

(
1 + e−iωg+t e+iωg−t

ωg+
+ e−iωg−t e+iωg+t + 1

ωg−

)
,

Age = χgiχei

4

(
e−iωe+t e+iωg+t + e−iωe+t e+iωg−t

ωe+

+e−iωe−t e+iωg+t + e−iωe−t e+iωg−t

ωe−

)
, (A3)

Aeg = χeiχgi

4

(
e−iωg+t e+iωe+t + e−iωg+t e+iωe−t

ωg+

+e−iωg−t e+iωe+t + e−iωg−t e+iωe−t

ωg−

)
,

Aee = χeiχei

4

(
1 + e−iωe+t e+iωe−t

ωe+
+ e−iωe−t e+iωe+t + 1

ωe−

)
.

The Hamiltonian for this AE two-level system is

HAE =
(

Agg Age

Aeg Aee

)
, (A4)

with the matrix elements given by Eqs. (A3). We note that
this Hamiltonian is not Hermitian. However, this is remedied
by making the TPRWA.

We define the two-photon detuning as �2 ≡ ωe − ωg −
2ω0 = ωeg − 2ω0, then apply the TPRWA by neglecting all
terms with frequencies oscillating faster than �2. This re-
quires us to evaluate each of the complex exponentials present
in Eqs. (A3). The possible resulting frequencies are shown
in Table I as a matrix, where the first column and row show
the AE frequencies and each subsequent cell is the AER

TABLE I. Rotating wave approximation.

m
↓ | n−→ ωg+ ωg− ωe+ ωe−

ωg+ 0 +2ω0 −ωeg −ωeg + 2ω0

−(�2 + 2ω0) −�2

ωg− −2ω0 0 −ωeg − 2ω0 −ωeg

−(�2 + 4ω0) −(�2 + 2ω0)
ωe+ ωeg ωeg + 2ω0 0 +2ω0

+(�2 + 2ω0) +(�2 + 4ω0)
ωe− ωeg − 2ω0 ωeg −2ω0 0

+�2 +(�2 + 2ω0 )

063117-5



BRIAN KAUFMAN et al. PHYSICAL REVIEW A 102, 063117 (2020)

frequency which is calculated by taking the difference of each
row (m) with each column (n) or m − n. Where present, the
second line of a given cell is the first line rewritten in terms
of �2 to emphasize which combinations yield frequencies
greater than �2. The frequencies that remain after the approx-
imation are shown in bold.

Keeping only terms that oscillate at �2 or slower, Eqs. (A3)
reduce to

Agg = χ2
gi

2

ωgi

ω2
gi − ω2

0

= ωS
g (t ), (A5a)

Age = 1

4

χgiχei

ωei − ω0
e−i�2t = �̃(t )e−i�2t , (A5b)

Aeg = 1

4

χeiχgi

ωgi + ω0
e+i�2t = �(t )e+i�2t (A5c)

Aee = χ2
ei

2

ωei

ω2
ei − ω2

0

= ωS
e (t ) (A5d)

These matrix elements can be redefined as the dynamic
Stark shift, ωS

g,e(t ) [Eqs. (A5a) and (A5d)], and the two-photon
Rabi frequency, �(t ) [Eqs. (A5b) and (A5c)]. Thus we can
write the Hamiltonian as

HAE+RWA =
(

ωS
g (t ) �̃(t )e−i�2t

�(t )e+i�2t ωS
e (t )

)
, (A6)

with the matrix elements given by Eq. (A5). This Hamiltonian
is Hermitian in the limit that ωei − ω0 = ωgi + ω0 or �2 = 0.

Inserting Eqs. (A5) back into Eqs. (A2), we generate the
TDSE for AER given in the main text, Eqs. (13).

APPENDIX B: SIMULATION MODEL

As discussed in the main text, the simulation uses a dif-
ferential equation solver to numerically integrate Eqs. (5) and
(11) to calculate the state populations. The parameters used in
Fig. 1 are given below in Table II.

We ran several simulations for varying pulse duration, �τI ,
as shown in Fig. 2, where we adjusted the pulse intensity, I0,
such that the pulse area was kept constant. All other parame-
ters described in Table II remained the same.

In a similar fashion, we varied the one-photon detuning,
� = Ei − Eg − ν0, by varying the intermediate-state energy
Ei. Figure 5 shows the populations as a function of time
with an inset displaying the energy-level diagram. The four
panels correspond to four different detunings: 50, 200, 350,

TABLE II. Default model parameters,

Parameter Value

Eg 0 THz
Ei 600 THz
Ee 800 THz
ν0 400 THz
μig 2.11e−29 C m
μie 2.09e−29 C m
I0 0.6667 TW/cm2

�τI 30 fs

FIG. 5. Population as a function of time for four different detun-
ings (� = |i〉 − |ν0〉) at 30-fs pulse duration.

and 500 THz, where the inset shows the intermediate state
labeled |i〉 (purple) shifting to increasing energy. Once again
the pulse intensity was adjusted to keep the pulse area constant
and all other parameters described in Table II remained the
same.

In terms of understanding AE, the pulse duration and
one-photon detuning are interchangeable. To complement the
qualitative nature of the comparison of the exact solution
and AER described in Fig. 5, we calculated the population

FIG. 6. Population error ((Pe − Pe,AER)/Pe) as a function of one-
photon detuning with fixed pulse duration FWHM = 30 fs.
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FIG. 7. Imaginary complement to Fig. 3.

error as a function of detunings for a quantitative approach
in Fig. 6. The figure shows an upper and lower x axis which
are coupled to one another. The lower axis describes the
error in terms of the detuning, while the upper axis describes
the error in terms of the SVEA. By dividing the detuning by
the laser bandwidth for a 30-fs pulse, we effectively rewrite
the SVEA as �/χ � 1. From this graph, one can see that
even when the SVEA is no longer valid the error is still rather
reasonable.

FIG. 8. Imaginary complement to Fig. 4.

APPENDIX C: IMAGINARY COMPLEMENT

Using the coefficients from the full solution, we calculated
each term that contributed to the total excited-state coefficient.
Figures 3 and 4 show the real part normalized to ce(t ). In
Figs. 7 and 8, we show the complementary imaginary parts
and note that the imaginary part is normalized to the final total
excited-state coefficient.
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