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Abstract of the Dissertation

Ultrafast Coherent Control Spectroscopy

by

Chien-hung Tseng

Doctor of Philosophy

in

Physics

Stony Brook University

2012

Coherent control of quantum systems is currently a very active area

of research in physics and chemistry. The goal of coherent control

is to prepare molecules in specific quantum states that can lead to

different chemical reactions, e.g. fragmentation and isomerization.

One approach is the control of interference between multiple quan-

tum pathways via their phases from the initial to the final state

which consequently excites one molecular state or molecule over

another with shaped pulses. The other approach is to generate dif-

ferent reaction products with pulses that match specific transient

Franck Condon windows and transfer the wavepacket in a precise

phase of vibrational motion to a new electronic state.

Recently, there are increasing applications of coherent control to-

wards cellular imaging. It is especially beneficial for distinguishing

broadband fluorophores with similar two-photon absorption cross-

sections, e.g. for free and enzyme-bound nicotinamide adenine din-

ucleotide (NADH). In this thesis, we discriminate between samples
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containing either free NADH or enzyme-bound NADH solutions

with pulses that have a π phase jump at a given frequency within

the excitation bandwidth. This parameter scan is sensitive to as

low as 3% of binding. The same idea can be generalized to other

two-photon fluorescence systems, and a closed-loop feedback con-

trol approach should allow even wider application.

We also develop two-dimensional (2D) Fourier transform spectroscopy

in the deep UV (262 nm) to study DNA bases excited state relax-

ation dynamics. We compare 2D spectroscopy measurements in the

deep UV for monomeric adenine and uracil in aqueous solutions.

Both molecules show excited state absorption on short timescales

and ground state bleach extending for over 1 ps. While the 2D

spectrum for uracil shows changes in the center of gravity during

the first few hundred femtoseconds, the center of gravity of the 2D

spectrum for adenine does not show similar changes. We discuss

our results in light of ab initio electronic structure calculations.
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with whom we improved the 2D spectroscopy setup together. There are many

days that we had to search for timezero until late or to take long night shifts,
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Chapter 1

Introduction

Coherent control has drawn interest in the Atomic, Molecular, and Optical

(AMO) community because it can steer a photoreaction towards a desired

product channel through shaped excitation pulses. Brumer and Shapiro pro-

posed that control can be achieved by interference between possible pathways

that lead to the desired product state [1]. For example, in photo-induced

transitions between molecular energy states, we can enhance or suppress the

multiphoton transition probability by tailoring the spectral phase of the exci-

tation pulses [2, 3]. Another approach to control introduced by Tannor and

Rice [4, 5] is to steer the molecular wavepacket out from one of the exit chan-

nels (e.g. dissociation) by matching the ultrafast pulses to specific vertical

transition (Frank Condon) windows. The first pulse transfers ground state

wave function vertically and launches the wavepacket to the excited state.

The wavepacket propagates on the excited potential energy surface (PES) and

evolves with time. Finally, the second pulse leads to another vertical tran-

sition, and the propagation time on the excited state PES (i.e. the position

from where the wavepacket is ”dumped” by the second pulse) is determined by

the delay between the two ultrafast pulses. Wavepackets produced at different

positions on the excited state PES can result in different products [5]. Figure

1.1 illustrates the two approaches to coherent control.

This thesis describes coherent control spectroscopy in the weak field regime

where the evolution of quantum states can be solved by the time-dependent

perturbation theory. We apply coherent control to functional two-photon flu-

orescence (2PF) cellular imaging. As the name suggests, 2PF measures the
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Figure 1.1: Two approaches to coherent control. Blue arrows refer to photo-
induced transitions, and the red arrow is the wavepacket motion on the PES.
Left panel: the Brumer-Shapiro approach, which controls the transition prob-
ability by tailoring the interference between possible pathways to the final
state. Right panel: the Tannor-Rice approach, which exploits the wavepacket
dynamics to steer the wavepacket to different exit channels by varying the
delay between the pump and ”dump” pulses.

fluorescence from two-photon transitions. Since the two-photon absorption

(TPA) only occurs when the photon flux is sufficiently high, the 2PF signal

can only be induced from the area in the sample where the laser is focused,

and the sample away from the focus will not have contribution to the signal.

When applied to imaging, it has the benefit of better spatial resolution, less

background, and larger penetration depth. Coherent control spectroscopy has

been demonstrated to selectively excite different fluorescent probes and detect

the same probe in different pH environments [6–11]. Meshulach et al. show

that it is possible to control a non-resonant two-photon transition by tailoring

the spectral phase. For example, the TPA probability is maximized when the

laser pulse is transform-limited, or when there is a π phase jump at half of

transition frequency in the laser spectrum [2, 3]. In this thesis, we use π phase

scans to discriminate between unbound and enzyme-bound forms of NADH in

solutions. The two forms of NADH have very similar single-photon absorption

and emission spectrum, and it requires spectrofluorometry or fluorescence-

lifetime-imaging measurements to distinguish between the two. In contrast,

we are able to excite the TPA of the two forms of NADH and probe their

difference in the TPA spectrum with shaped pulses from a single laser. As we

apply a π phase scan to the NADH, the two forms of NADH respond differ-
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ently to the field because of the difference in their TPA spectrum. We can

determine the enzyme binding ratio of NADH by exciting the sample with two

pulse shapes in succession without measuring the fluorescence spectrum.

We also measure the excited electronic state relaxation dynamics of DNA

bases under UV radiation with third-order coherent spectroscopy, which is gen-

erally known as the two-dimensional Fourier transform spectroscopy. There is

continuous interest in excited electronic states of DNA because they are the

precursors to mutations. One-dimensional ultrafast spectroscopy measure-

ments indicate that the DNA bases can return nonradiatively to the ground

state through internal conversion. But one-dimensional spectroscopy has its

limitations. For molecules in condensed medium, inhomogeneous broadening

due to variation of the local environment makes it difficult to extract struc-

tural information and molecular dynamics from the measurement. It has been

proposed that 2D spectroscopy, the optical analog of NMR, might have less of

a contribution from inhomogeneous broadening. It has been predicted that 2D

spectrum can correlate initial and final position within vibrational wavepack-

ets [12], so we would like to elucidate the wavepacket dynamics of DNA bases

under UV exposure with 2D spectroscopy measurements.

This thesis is composed of five chapters and two appendices. Chapter 2

shows the details of the laser system, the ultrafast pulse-shaper, and the setups

for coherent control 2PF spectroscopy and 2D Fourier transform spectroscopy.

It also explains how we tackled possible sources of error, e.g. laser intensity

fluctuations, beam-pointing instability, background signal due UV absorption

by the solvent, in the 2D spectroscopy measurements.

In Chapter 3, we introduce the theory of multiphoton absorption in the

weak field limit and demonstrate that the multiphoton transition probability

is sensitive to the spectral phase of the excitation pulse. Two forms of NADH in

solutions with similar two-photon absorption cross section can be identified by

coherent control spectroscopy. This technique is also sensitive to change in the

enzyme-biding ratio of NADH caused by variation in the solution temperature.

Chapter 4 gives an overview of the two-dimensional Fourier transform spec-

troscopy. We start from constructing the third-order response of photon-

matter interaction with time-dependent perturbation theory. Different ex-

citation and detection geometries of 2D spectroscopy are introduced in this
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chapter. Finally, we present 2D spectrum of single adenine and uracil. Both

of them show excited state absorption (ESA) for short times (< 100 fs), and

ground state bleach (GSB) extending for long times (> 1 ps). Uracil shows

an evolution of the 2D spectrum on a 100 ∼ 300 fs timescale, which adenine

does not. We interpret this difference between adenine and uracil in terms of

the slope of the excited state potential energy surface near the Frank Condon

(FC) region. We give the conclusion and discuss possible future projects and

improvement to the setup in Chapter 5.

4



Chapter 2

Experimental Apparatus

In this chapter we will describe two experimental apparatus for ultrafast co-

herent control spectroscopy - the first one is two-photon-fluorescence (2PF)

spectroscopy and the second one is two-dimensional (2D) Fourier transform

spectroscopy in the deep UV. Both experiments measure molecular response

of targeted systems after they are excited by shaped ultrafast laser pulses. In

2PF spectroscopy, we measure the fluorescence yields from fluorescent pro-

teins and coenzyme-enzyme solutions as a function of different shaped IR (780

nm) pulses to distinguish different proteins and enzyme-binding states without

spectrally resolve fluorescence. In 2D UV spectroscopy, we excite DNA bases

with phase-locked UV (260 nm) pump pulses and measure probe transmission

spectrum as a function of pump-pump delay. Both spectroscopies made use of

our ultrafast laser system, which is described below.

2.1 Ultrafast Laser System

Our laser system consists of a modelocked Ti:Sapphire oscillator (KM Labs

model TS), which seeds the Ti:Sapphire, chirped-pulse amplified ultrafast laser

amplifier (KM Labs HAP-AMP). The oscillator is pumped by a Coherent Verdi

V5 Continuous Wave (CW) laser and the amplifier by a Quantronix Q-switched

Nd:YLF laser. The amplifier operates at 1 kHz, with pulse duration 30 fs and

average power 1 W. The laser central wavelength is at 780 nm and can be

tuned by several nanometers by a pellicle in the amplifier cavity.
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2.2 Pulse Shaper

Because the pulse duration for femtosecond pulses are much shorter than the

fastest electronics available, it is impossible to shape laser pulses directly in

real time by conventional switches. Here, we followed Weiner’s proposal [13] to

shape the pulse in the spectral domain that includes (1) spatial Fourier anal-

ysis of the incident pulse, (2) spatial filtering of the dispersed frequencies, and

(3) recombination of all the frequencies into a single collimated beam. Figure

2.1 shows a schematic diagram of the pulse shaper used in our lab, which em-

ploys the concept of 4F correlator in Fourier optics. The first grating (GT1)

and converging mirror (CM1) first spatially separate the frequency compo-

nents of the incoming pulse, then in the Fourier plane of the zero-dispersion

line, we apply a programmable amplitude/phase mask with an acousto-optic

modulator (AOM) to shape light in the frequency domain. The shaped pulse

spectrum E(ω)shaped is

E(ω)shaped = E(ω)input ×M(ω) (2.1)

where E(ω)input is the input pulse spectrum and M(ω) the amplitude/phase

mask programmed on the AOM. We use an arbitrary waveform function gen-

erator (GAGE Compugen 11G) to send out desirable radio frequency (RF)

voltage signals of 150 MHz to drive a piezoelectric transducer next to the

AOM and generate RF waves inside the AOM crystal. When traveling though

the crystal, laser pulses experience Bragg diffraction, and amplitude/phase

modulations in the RF waves will write on the diffracted light and therefore

modify its amplitude/phase. Besides AOMs [14, 15], other spatial light mod-

ulators (SLM) like liquid crystal arrays can also serve as pulse shaping masks,

but AOMs provide a continuous phase/amplitude mask and rapid waveform

refresh rates so we chose to use an AOM in our setup. After the AOM, one fo-

cal length away from the Fourier plane, the second curved mirror performs the

second Fourier transform from the masking plane to the plane of the second

grating, where all colors are combined back to a collimated beam.
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Figure 2.1: Pulse shaper. GT1, GT2: diffraction gratings; CM1, CM2: curved
mirrors; FM1, FM2: folding mirrors; P: piezoelectric transducer. The AOM
applies an amplitude/phase mask to the laser spectrum in the Fourier plane.
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2.3 2PF Spectroscopy

Two-photon fluorescence microscopy has been widely used in biomedical imag-

ing as it provides better optical sectioning, higher resolution, deeper pene-

tration depth and less photodamaging and photodamage [16–18] than tradi-

tional confocal microscopy. Recently, coherent control techniques have been

applied to nonlinear microscopy for selective excitation of different fluores-

cence probes and of the same probe in different environments [6–11]. Here

we developed 2PF spectroscopy with shaped excitation pulses to distinguish

fluorescence molecules that have similar two-photon absorption and emission

spectrum without the need of spectrally resolving fluorescence spectrum. This

technique can selectively excite different fluorescence molecules and detect

NADH-enzyme binding states.

Figure 2.2 illustrates the experimental setup for 2PF spectroscopy. The

excitation IR pulses are shaped in phase and/or amplitude according to the

specific character of the samples of interest. Then we can selectively enhance

fluorescence from certain molecule with designated excitation pulse shapes.

The desirable pulse shape can be determined by closed-loop feedback genetic

algorithm (GA) [19–22] or by performing parameter scans (e.g. π phase flip

scans, sinusoidal phase scans). The excitation pulse energy is tuned down to 25

µJ and focused into the cuvettes with a long 1 m lens to avoid three-photon ab-

sorption and photodamaging. Several fluorescent samples are used to demon-

strate the feasibility of this technique: the fluorescent proteins and dyes (eGFP,

citrine, cherry, Alexa, and Fluorescein) are stored in PBS buffer, and fluores-

cent coenzyme reduced nicotinamide adenine dinucleotide (NADH) (Acros) is

kept in Trizma (Sigma Aldrich, pH 7.0, 1 M) buffer. The induced 2PF is con-

verted to magnified electronic signal by photo multiplier tubes (PMTs) and

finally measured by a PC based oscilloscope (Gage Compuscope).

2.4 2D Spectroscopy in the Deep UV

2D Fourier transform ultrafast infrared (IR) and electronic spectroscopies have

become powerful techniques for studying biological and physical systems. 2D

spectroscopies provide information on molecular structure and energy transfer,

e.g. protein-folding, electronic couplings in photosynthesis and semiconduc-

8
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tor carrier dynamics [12, 23, 24]. In 2D spectroscopies, one measures the

third order polarization generated by a pair of excitation pulses. It is crucial

to maintain the phase (time) stability between these excitation pulses. Ex-

periments have maintained the phase stability between excitation pulses via

diffractive optics [25, 26], active interferometric stabilization [27] and most re-

cently by generating phase-locked pulses in the collinear or boxcar geometry

with a pulse-shaper [28–31]. Performing 2D spectroscopy with a pulse shaper

in a pump-probe geometry allows taking measurements with a very simple

experimental setup [30]. In this approach, one measures absorptive spectra

and is able to work in a rotating frame and implement phase-cycling [28, 32]

for relaxed sampling requirements, selectivity in the couplings measured, and

improved signal to noise.

While there have been many advances made in 2D spectroscopy over the

past few years, 2D spectroscopy has been limited to the IR and visible regime

although many molecules of interest absorb in the UV and deep UV. The phase

stability required for 2D UV spectroscopy is over an order of magnitude greater

than that for 2D IR spectroscopy because of the difference in wavelength. For

1/100 of a cycle phase stability between pulses, one requires a timing jitter

between excitation pulses of less than 10 attoseconds, which is quite demanding

using a conventional interferometer-based setup. Here, we demonstrate pulse

shaper assisted 2D UV (∼ 262 nm) spectroscopy at the S0-S1 transition band

for many interesting molecules. Figure 2.3 shows the apparatus for 2D UV

spectrsocopy. Pulses from the amplified Ti:sapphire laser system are separated

into two beams with an 80/20 beam-splitter. We produce UV pulses (λ0=262

nm) in both beams via third harmonic generation using an array of three Beta-

Barium Borate (BBO) crystals. We use the first crystal for second harmonic

generation (SHG), the second for group velocity dispersion compensation of

the remaining fundamental and second harmonic, and the third crystal for

sum frequency generation to obtain the third harmonic. The resulting third-

harmonic UV pulses have a bandwidth of 13 THZ (433 cm−1) and a pulse

duration slightly under 50 fs.

In order to generate phased-locked UV pump-pump pulses for the 2D exper-

iment, the stronger UV beam goes through a computer controlled acousto-optic

modulator (AOM) based ultrafast pulse shaper [14, 33]. Unlike an interferom-

10
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Figure 2.3: Experimental setup for 2D UV spectroscopy. BS: 80/20 beam
splitter, NC and NC2: nonlinear third-harmonic-generation crystals, CM: UV-
Aluminum curved mirror with focal length = 500 mm.
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eter, the pulse shaper can independently control the delay (τ) and phase (φ12)

between pulses, and naturally produces phase stable pulse pairs. The phase

mask to be programmed on the AOM to generate a phase-locked pulse-pair

can be described by

M(ω) =
1

2
[ei(2πftac+φ1) + ei(2πftac+φ1)] (2.2)

where φ1 and φ2 correspond to the phase of pulses at t = 0 and t = τ respec-

tively, and φ2(ω) = φ1(ω) + ω · τ . f is the carrier frequency of the acoustic

wave, and tac is the time-axis for the acoustic wave. Because the acoustic

wave is static to the femtosecond laser pulse, tac can be thought as differ-

ent pixels in the AOM crystal. The frequency ω can be programmed as the

natural frequency of the pulses (non-rotating frame), or shifted to lower fre-

quencies (partial rotating frame), which lowers the required sampling rate and

can transfer the signal to a less noisy region in the frequency domain [30, 32].

Moreover, the pulse-shaper can apply arbitrary phases to each pulse so that

one can remove artifacts in the signal with phase-cycling. For instance, phase

cycling allows us to separate the third order signal we are interested in from a

’transient absorption signal’. The details of phase-cycling and how to generate

phase-locked pulses will be explained in Chapter 4.

The pump-pump pulses generated by the pulse-shaper intrinsically have

high relative phase stability without requiring additional adaptive optics. We

used spectral interferometry to measure the relative phase between the two

pump pulses. We measured the spectrum of the pump pulse pair and recov-

ered the relative phase between the pulses for 30 minutes. The delay between

the two pulses was kept constant as 400 fs. Figure 2.4 shows the fluctuations of

retrieved relative phase over time, which RMS deviation 0.017 rad correspond-

ing to a timing jitter of about 2 attoseconds. This measurement is limited by

the signal-to-noise ratio of our spectrometer, and places a lower limit on the

phase stability between the pump-pump pulses [34]. As the phase of the acous-

tic wave for the pulse shaper is locked to the arrival time of the laser pulse in

the modulator, the phase of the pump pulse pair is also constant relative to

the probe, although we average over all pump probe phases by working in a

crossed beam geometry.

Given the phase stability of the pump pulses from our pulse shaper, the
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Figure 2.4: Relative phase between pump-pump pulse pair measured over 30
mins.

major sources of noise in the measurement are spectrometer coupling instabil-

ity, laser intensity fluctuations, spectral instabilities (fluctuations dominated

by changes in the center of the spectrum originating from the Kerr lens mode-

locked oscillator in our laser system), Rayleigh scattering from the DNA/RNA

solutions, and thermal/readout noise from the spectrometer. We implemented

three improvements to the apparatus to mitigate these sources of noise. First,

we implemented a closed loop proportional-integrative-derivative (PID) con-

trol system to improve the beam pointing stability of the pump and probe

beams. This improved the stability of the coupling into the spectrometer and

reduced the noise in the measurement due to spectrometer coupling by a fac-

tor of about 5. We also built a box around the optics to further reduce beam

pointing fluctuations due to air currents. However, because it is difficult to

asses the improvements due to the box alone, we did not quantize the amount

of improvement from putting a box around the laser. In order to correct for

laser intensity fluctuations and spectral instabilities, we introduced a third ref-

erence beam in the setup, which is a replica of the probe pulse and arrives in
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the sample several picoseconds after the pump and probe pulses. An inverted

UV Aluminum mirror with fused silica substrate is placed at 45 degrees in the

2nd UV beam. The beam reflected from the front surface acts as the probe

beam in the 2D measurement, and the one reflected by the metal coating on

the second surface serves as a reference beam. The reference has the same

spectrum as the probe and is proportional in energy. The probe and reference

then pass through the same optics and their spectra are measured simultane-

ously with a dual-channel spectrometer behind the sample. Since the reference

pulse arrives over 50 picoseconds after the probe, the molecular dynamics are

only registered by the probe, while common laser noise present in both spectra

can be canceled by dividing the probe by the reference.

The pump pair, probe, and reference pulses are focused into the sample

solution by a 500 mm focal length UV-enhanced Aluminum mirror (Edmund

Optics). The energy of the pump pulses is between 200 and 500 nJ each. The

probe and reference pulses have energies more than an order of magnitude

lower than the pump pulses. The focused intensities are difficult to estimate

because the mode of the shaped UV beam is structured. However, measure-

ments carried out with a 1000 mm focal length mirror (having a focal intensity

4 times lower than for the 500 mm focal length mirror) show very similar 2D

spectra. The adenine and uracil were obtained from Sigma Aldrich and used

without further purification. Solutions were prepared with ultra-purified wa-

ter from purification system Milli-Q (Millipore). The solution absorbance was

kept at 1 ∼ 1.3.

In order to improve the sample circulation, we also constructed a flow cell

that minimizes artifacts due to the cell windows and the solvent. An im-

portant source of systematic error in DNA/RNA 2D spectra is strong linear

and nonlinear UV absorption by the solvent and fused silica windows on the

sample holder, which can be several times larger than DNA/RNA signal and

mask the real DNA dynamics near short pump-probe delays. The excited

states lifetimes for DNA/RNA bases in water are on the order of a few hun-

dreds femtoseconds [35], but impurities in the solvent and the fused silica,

and two-photon absorption from the solvent also lead to a large non-resonant

background signal near zero time delay. Therefore, the 2D spectrum measured

from 0 to 120 fs is the sum of DNA/RNA signals plus a significant background
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from the windows and solvent. If we suppress the background to some extent,

we can still extract pure DNA/RNA data with careful background subtrac-

tion. The intuitive solution is to use the highest quality UV grade fused silica

(UVFS) and high-performance liquid chromatography (HPLC) water in order

to avoid absorption by impurities. After testing out several UVFS windows

from different companies, we found that all of the windows we tested absorb

in the UV, and the signal modulation depth depends largely on their thick-

ness, so the simplest solution was to use thin UVFS cover slips as windows

rather than thick windows with higher quality. Our home-designed flow cell

can hold windows of varying thickness. Our measurements were made with

the thinnest windows which we could find, and which did not deform during

the experiments due to the pressure variations with the peristaltic pump. The

window thickness is 160 µm and the cell path length is just under 2 mm.
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Chapter 3

Coherent Control Two-Photon

Fluorescence Spectroscopy

The goal of coherent control is to prepare molecules in specific quantum states.

One approach is the control of interference between multiple quantum path-

ways via their phases from the initial to the final state which consequently

excites one molecular state or molecule over another with shaped pulses [1]

(Figure 1.1, left panel). The other approach is to generate different reaction

products with pulses that match specific transient Franck Condon windows

[5] and transfer the wavepacket in a precise phase of vibrational motion to

a new electronic state (Figure 1.1, right panel). Recently, there are increas-

ing applications of coherent control towards cellular imaging. For example,

shaping of the spectral phase of an ultrafast laser pulse has been used to en-

hance image contrast in coherent anti-Stokes Raman scattering microscopy

[36]. Coherent control microscopy has also been demonstrated to selectively

excite different fluorescent probes and detect the same probe in different pH

environments [6–11]. Compared to using a tunable ultrafast laser to sepa-

rately excite cells/tissues labeled with different fluorophores, coherent control

allows selective imaging of fluorophores with a single broadband light source

and pseudo-simultaneous imaging of different cells/tissues by switching pulse

shapes rapidly. It is especially beneficial for distinguishing broadband fluo-

rophores with similar two-photon absorption cross section, e.g. for NADH,

the enzyme-binding induced shifts of the absorption spectrum (up to ∼ 10

nm) are small compared to the width of the NADH emission spectrum (∼ 150
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nm).

The ideal situation for coherent control is to know the system’s Hamilto-

nian and design the control light field accordingly. However, total Hamiltonian

for molecules, even atoms, are complicated to construct, so it is not always

feasible to design a pulse shape to enhance a desired product from calcula-

tion. One solution to this problem is to use a closed-loop feedback technique

with a learning algorithm. The basic idea is to guess a pulse shape, measure

how well it controls the system, then modify the pulse shape iteratively un-

til maximum control has been achieved. Details of our closed-loop feedback

genetic algorithm(GA) can be found in [19]. At the same time, for some mi-

croscopy applications (e.g. to discriminate fluorophores of different absorption

spectrum) coherent control can also be achieved with parameter scans which

probe the system with adjustable parameters, e.g. adding linear chirp in the

time domain to optimize population transfer [37], or applying phase jump at

half of the resonance frequency to enhance TPA probability [3]. In the follow-

ing sections, we will explain how we selectively excite individual fluorescent

proteins and endogenous compounds with parameter scan methods.

3.1 Time-Dependent Perturbation Theory

In order to understand why the best shape of laser pulse can maximize or sup-

press the yield of a certain chemical product, we start with the time-dependent

perturbation theory for a molecule-field interaction system with Hamiltonian

H = H0 + V (t), where H0 represents the field-free Hamiltonian and satisfies

the equation for the eigenstates {|n〉} and eigenenergies En

H0|n〉 = En|n〉 = ~ωn|n〉 (3.1)

V (t) = −µ · Ẽ(t) is the interaction Hamiltonian, where µ = er is the electric

dipole moment operator. For a linearly-polarized light with electric field ε(t),

the matrix element of V (t) in the eigenstate basis is

Vij(t) = µij(ε(t) + c.c.) (3.2)
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If we define the initial state ket |i〉 of a physical system at t = 0 for t0 = 0as

|i〉 = |ψ, t0 = 0; t = t0〉 =
∑
n

Cn(0)|n〉 (3.3)

and at t > 0, Cn(t) is time-dependent and satisfies

|ψ, t0 = 0; t〉 =
∑
n

Cn(t)e−iEnt/~|n〉 (3.4)

If there is no external interaction (i.e. V (t) = 0), the state ket will simply be

|ψ, t0 = 0; t〉 =
∑
n

Cn(0)e−iEnt/~|n〉. Cn(t) will change with time only in the

presence of V (t), so it is natural to solve Eq. 3.4 in the Interaction picture,

where the evolution of the state ket is determined by VI(t).

3.1.1 Interaction picture

Suppose we have a system with initial state ket |ψ, t0 = 0; t = t0〉, at a later

time, we denote the state ket in the Schrödinger’s picture as |ψ, t0; t〉S, where

the subscript S refers to a state ket in the Schrödinger picture. Then we define

the state ket and the interaction Hamiltonian in the interaction picture as

|ψ, t0; t〉I ≡ U †0(t, t0 = 0)|ψ, t0; t〉S
≡ eiH0t/~|ψ, t0; t〉S

VI ≡ U †0(t, t0 = 0)VSU0(t, t0 = 0) = eiH0t/~VSe
−iH0t/~ (3.5)

where the subscript ”I” refers to a state ket or an operator in the Interaction

picture, and U0(t, t0 = 0) = e−iH0t/~ is the time evolution operator with re-

spect to the Hamiltonian H0. Combining Eq. 3.4 and 3.5, there is a simple

representation of |ψ, t0; t〉I in Cn(t)

|ψ, t0; t〉I = eiH0t/~|ψ, t0; t〉S = eiH0t/~
∑
n

Cn(t)e−iEnt/~|n〉

=
∑
n

Cn(t)|n〉 (3.6)

where Cn(t) = 〈n|ψ, t0; t〉I since 〈n|
∑
n′

C ′n(t)|n′〉 =
∑
n′

C ′n(t)δn,n′
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So how does Cn(t) evolve with time? We start by differentiating both sides

of Eq. 3.5

i~
∂

∂t
|ψ, t0; t〉I = i~

∂

∂t
(eiH0t/~|ψ, t0; t〉S)

= i~[
iH0

~
eiH0t/~|ψ, t0; t〉S + eiH0t/~(H0 + VS(t))|ψ, t0; t〉S]

=
(
eiH0t/~VS(t)e−iH0t/~

)
eiH0t/~|ψ, t0; t〉S

= VI(t)|ψ, t0; t〉I (3.7)

then multiply Eq. 3.7 by 〈n| from the left and use results from Eq. 3.6,we

obtain

i~
∂

∂t
Cn(t) = i~

∂

∂t
〈n|ψ, t0; t〉I

=
∑
m

〈n|VI(t)|m〉〈m|ψ, t0; t〉I

=
∑
m

〈n|eiH0t/~VS(t)e−iH0t/~|m〉Cm(t)

=
∑
m

Vnme
i(En−Em)t/~Cm(t) =

∑
m

Vnme
iωnmt/~Cm(t)

(3.8)

where Vnm(t) is the matrix element for the external interaction Hamiltonian,

and ωnm ≡ ωn − ωm = (En − Em)/~. For most of the systems exposed to an

electromagnetic field, the above equation cannot be solved exactly. Oftentimes,

in the weak field limit, we can find a solution by time-dependent perturbation

[38, 39]. From Eq. 3.7, the state ket in the interaction picture can be expressed

as:

|ψI(t)〉 = |ψI(t0)〉+
∞∑
n=1

(
−i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

VI(τn)VI(τn−1) . . . VI(τ1)|ψI(t0)〉 (3.9)
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And the different orders of transitions amplitude Cn(t) can be expressed as

C(0)
n (t) =

∑
i

δni

C(1)
n (t) =

−i
~
∑
m

∫ t

t0

Vnm(t′)eiωnmt
′
dt′C(0)

m (t′) =
−i
~
∑
m

∫ t

t0

Vnm(t′)eiωnmt
′
dt′δmi

=
−i
~

∫ t

t0

Vni(t
′)eiωnit

′
dt′

C(2)
n (t) =

(
−i
~

)2∑
m

∫ t

t0

Vnm(t′)eiωnmt
′
dt′C(1)

m (t)

=

(
−i
~

)2∑
m

∫ t

t0

Vnm(t′)eiωnmt
′
dt′

(∫ t′

t0

Vmi(t
′′)eiωmit

′′
dt′′

)
... (3.10)

3.1.2 Two level systems in electric fields

For resonant interaction of a weak laser pulse with a two-level system, assuming

the atom is initially in the ground state |g〉, and t0 = −∞ first-order-time-

dependent perturbation predicts the amplitude of the excited state |f〉 equals

C
(1)
f (t) =

−i
~

∫ t

−∞
µijε(t

′)e−iωfgt
′
dt′

=
−i
~

∫ t

−∞
µij

(∫ ∞
−∞

ε̃(ω)e−i(ω+ωfg)t′dω

)
dt′ (3.11)

where ε̃(ω) is the Fourier transform of ε(t). At times after the excitation pulse

duration, t→ ∞, the transition amplitude is then

C
(1)
f (t) =

−i
~
µij ε̃(ω − ωfg) (3.12)

which largely depends on the energy content of the excitation pulse spectrum

resonant with transition, and neither the amplitudes or the phases of the other

spectral components have any effect to the transition possibility. The equation

for the transition amplitude becomes more interesting as we consider higher

order perturbation theory.
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3.1.3 Multiphoton transitions in weak fields

Even if the pulse is not resonant with any one-photon transition, there is still

finite possibility for the system to absorb multiple photons within a short

period of time if the pulse intensity is high enough - this phenomenon is called

multiphoton transition. As we will show in the following, the relative phase

of the different frequencies in the field is extremely important for multiphoton

transitions. We first consider a two-photon transition with no intermediate

resonances and apply rotating wave approximation (RWA) to the 2nd order

perturbation theory. The amplitude to the final state |f〉 can be expressed as:

C
(2)
f (t) =

(
−i
~

)2∑
m

µfmµmg

∫ t

−∞

∫ t′

−∞
ε(t′)ε(t′′)ei(ωf−ωm)t′ei(ωm−ωg)t′′dt′dt′′

(3.13)

where |g〉 is the ground state, and |m〉 are the possible intermediate states.

Since we assume ultrafast pulse excitation and all states are far from resonance,

the contribution of all intermediate levels adds up coherently only for a short

duration, and we can thus approximate the summation over all intermediate

states as [3]

∑
m

µfmµmge
iωm(t′′−t′) ≈

〈f |(µ)2|g〉 |t1 − t2| < 1
ω̄

0 |t1 − t2| ≥ 1
ω̄

(3.14)

where 〈f |(µ)2|g〉 is the effective two photon coupling, and ~ω̄ is the weighted

average energy where all the possible intermediate states are taken into con-

siderations [40]. Combining Eq. 3.13 and Eq. 3.14, the two-photon absorption

(TPA) probability becomes

P TPA
g→f ≡

∣∣∣C(2)
f (t =∞)

∣∣∣2
=

1

(~)4

∣∣∣∣〈f |(µ)2|g〉
ω̄

∣∣∣∣2 ∣∣∣∣∫ ∞
−∞

ε2(t)eiωfgtdt

∣∣∣∣2 (3.15)

where ~ωfg is the transition energy from the ground (|g〉) to the final (|f〉)
state. The TPA probability is in proportional to the two-photon power spec-

trum

F
(
ε2 (t)

)
=

∫ ∞
−∞

ε2(t)eiωfgtdt (3.16)
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This result can easily be generalized to an Nth order process, where the proba-

bility for N-photon transition to the excited state is proportional to the Fourier

component of εN(t) [3] at the excited-ground state energy difference divided by

~. In contrast to a single-photon transition, all frequency components of the

pulse may contribute to the multiphoton transition with their relative phases

playing important roles. We will use the case of TPA to explain this idea more

explicitly.

3.1.4 Control the TPA probability with a pulse with a

π phase jump in the spectrum

In the frequency domain, the transition probability for TPA, Eq. 3.15 can be

rewritten as

P TPA
g→f ∝

∣∣∣∣∫ ∞
−∞

ε(t)ei(ωfg/2+ω)tε(t)ei(ωfg/2−ω)tdt

∣∣∣∣2
=

∣∣∣∣∫ ∞
−∞

ε̃(ωfg/2 + ω)ε̃(ωfg/2− ω)dω

∣∣∣∣2
=

∣∣∣∣∫ ∞
−∞

A(ωfg/2 + ω)eiΦ(ωfg/2+ω)A(ωfg/2− ω)eiΦ(ωfg/2−ω)dω

∣∣∣∣2
(3.17)

where ε̃(ω) = A(ω)eΦ(ω) is the Fourier transform of ε(t). A(ω) and Φ(ω) are

the spectral amplitude and phase respectively. Unlike for a single photon

transition, in the case of multi-photon transition, both the amplitude and

phase of the excitation pulses affect the transition amplitudes. From Eq. 3.17,

the transition probability can be interpreted as a coherent sum over photon

pairs that fulfill the resonance condition (ωfg/2 + ω) + (ωfg/2− ω) = ωfg for

Ω = ωfg/2 ± ω within the spectrum of the excitation pulse. The two-photon

transition probability can therefore be controlled by tailoring the amplitude

and phase of a single pulse. For a given power spectrum, the TPA transition

probability P TPA
g→f is maximized when the spectral phase of the integrand is a

constant. The most obvious solution is a transform-limited pulse with Ω = 0

across the excitation spectrum, which is consistent with the intuition that

shorter pulses with higher peak intensities enhance TPA probability. One

of the other possible solutions are pulses with antisymmetric spectral phase
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distribution around the two-photon transition frequency ωfg/2, i.e. Φ(ωfg/2+

ω) = −Φ(ωfg/2 − ω), where the phase for the two terms in Eq. 3.17 cancel

each other.
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Figure 3.1: Intensity and phase of a pulse with a π phase jump.

As stated above, the TPA transition probability of a system reaches a

maximum when it is illuminated by transform-limited pulses, or by pulses

with a π phase jump (Figure 3.1) at the half of the transition frequency, where

Φ(ωfg/2− ω) = −π/2, Φ(ωfg/2 + ω) = π/2.

So how does a π-phase step affect the pulse shape in the time domain?

Figure 3.2 shows second harmonic generation frequency-resolved optical gat-

ing (SHG-FROG) plots for an unshaped pulse (left panel) and for a pulse

with a π phase step in the center of the spectrum (middle panel). The π

phase step in the spectrum stretches a nearly transform-limited 30 fs pulse to

100 ∼ 200 fs duration. It might seem counterintuitive that a pulse spreading

in time (as long as it is less than the excited state lifetime) can drive TPA

transitions as efficiently as a short transform-limited pulse. This result can be

understood by considering the second-order power spectrum of the pulse, or

the Fourier transform of the square of the electric field in time: F (E2 (t)). In

the weak field limit, the two-photon transition probability can be estimated as
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the product of the two-photon action cross section and the second-order power

spectrum of the excitation pulse. The right panel in Figure 3.2 indicates that

the second-order power spectrum has a spike with the same spectral density

as a transform-limited pulse at frequency twice the π-phase jump position.

For a narrow absorption lineshape characteristic of an atomic system, because

the TPA amplitude is only determined by the second-order power spectrum

near resonance, both a transform-limited pulse and a pulse with a π phase

step at half the resonance frequency can induce equal amount of transitions.

On the other hand, for a broad inhomogeneous TPA spectrum of a molecular

system, the transition probability is proportional to a sum of many individual

transitions [3].

P TPA ∝
∫ ∞
−∞

g(ωfg)

∣∣∣∣∫ ∞
−∞

ε2(t)eiωfgtdt

∣∣∣∣2 dωfg (3.18)

where g(ωfg) is the molecular TPA lineshape. Assuming g(ωfg) is much wider

than the excitation spectrum, P TPA becomes

P TPA ∝
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ε2(t1)eiωfgt1 ε∗2(t2)e−iωfgt2dt1dt2dωfg

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ε2(t1)ε∗2(t2)eiωfg(t1−t2)dt1dt2dωfg

=

∫ ∞
−∞

∫ ∞
−∞

ε2(t1)ε∗2(t2)dt1dt2δ(t1 − t2)

=

∫ ∞
−∞

ε2(t1)ε∗2(t1)dt1

=

∫ ∞
−∞

I2(t)dt (3.19)

which is consistent with the expectation that the multiphoton transition prob-

ability for a molecule with a broad inhomogeneous absorption line depends

only on the excitation intensity and not its phase.

We found that data from free and enzyme-bound NADH lie between the

two extremes. Both forms of NADH have TPA spectrum wider than 150 nm

[41], with their two-photon fluorescence maximized when they are illuminated

by transform-limited pulses, and slightly different response curves to π phase

step pulses between these two forms imply that a ratio of the signals can easily
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Figure 3.2: SHG-FROG plots showing both an unshaped pulse (left panel)
and a shaped pulse with π phase step in the middle of the spectral bandwidth
(middle panel). The right panel shows the second-order power spectrum, or
the Fourier transform of the square of the electric field in time, for an unshaped
pulse and two π phase step pulses that are representative of the control pulses
used in Figure 3.4

distinguish them. Our goal is to discriminate between samples containing

either free NADH or enzyme-bound NADH solutions with a π phase jump

at a given frequency within the excitation bandwidth, leaving the spectral

amplitudes unchanged.

3.2 Distinguishing between different states of

NADH

3.2.1 NADH as an intrinsic fluorophore

The electron transport chain is the most efficient way of energy production in

cells. The electron transport chain produces energy in the form of Adenosine-

5’-triphosphate (ATP) by transferring electrons to molecular oxygen. The

metabolic coenzymes flavin adenine dinucleotide (FAD) and NADH are the

primary electron acceptor and donor, respectively, in oxidative phosphoryla-

tion. The fluorescence of reduced NADH has been a useful non-invasive tool

for studying cellular energy metabolism [42–45]. Traditionally, metabolic dy-
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namics have been characterized by the total NADH concentration, however,

the reaction velocity of intracellular NADH-linked dehydrogenase depends on

the local concentration of free NADH [46]. As a result, there is increasing

research dedicated to identify intracellular free NADH concentrations. Three

major techiniques to deteremine free NADH conctrations are: calibrated spec-

trofluorometry, time-resolved fluorescence and anisotropy decays [47, 48], and

the fluorescence lifetime measurement [47, 49].

As there is fluorescence enhancement in enzyme-bound NADH, accompa-

nied with shifts in the emission peak, calibrated spectrofluorometry can be

used to determine the free/bound NADH concentrations. Figure 3.3 shows

the single photon absorption and emission spectrum of pure NADH and mi-

tochondrial malate dehydrogenase (mMDH)-bound NADH. On the left panel,

the absorption peak shifts from 340 nm to 348 nm for 37% bound NADH

(NADH 27 µM + MDH 13 µM). On the right panel, the emission peak slightly

shifts to the blue for 63% bound NADH (NADH 27 µM + MDH 25 µM), and

its the fluorescence yield is four times more than that for pure NADH. Time-
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Figure 3.3: Left panel: one-photon absorption spectrum of NADH and NADH
plus mMDH. Right panel: one-photon fluorescence spectrum of NADH and
NADH plus mMDH at various concentrations measured by a spectrofluorom-
eter. The excitation wavelength was 385 nm.

resolved fluorescence and anisotropy decays [47, 48] also provide information

to the excited state dynamics and rotational mobility of NADH. The fluo-

rescence lifetime measurement, which probes the decay time of the excited
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state, is sensitive to fluorophore micro-environment, and provides a method

for discriminating free and enzyme-bound components. The anisotropy of the

fluorescence measures its parallel and perpendicular components relative to

the excitation polarization and reveals the angle between the excitation and

emission dipoles. The change of the net molecular orientation due to rotational

diffusive motion results in the decay of anisotropy. The characteristic decay

time, known as the rotational diffusion time, characterizes the timescale of

this diffusive motion. As there is a significant increment in the size of enzyme-

bound NADH, binding of NADH leads to a large increase (> 10 times) in the

anisotropy decay time.

The above three techniques, however, have their own drawbacks that make

them less appealing to microscopy. To perform calibrated spectrofluorometry,

one has to cleverly couple dim scattering fluorescence into a tiny spectrometer

slit (∼ 10 µm) to spectrally resolve the fluorescence, not to mention possi-

ble UV damage and the extra post-processing time to analyze the spectrum

shift. By the same token, time-resolved fluorescence measurements need to

record low-level light signals with picosecond time resolution that requires ex-

tra time-correlated single-photon counting instruments and detail fittings for

the decay function. For the anisotropy measurements, additional optics to

measure fluorescence along different polarization and post-processing are also

essential. Most important of all, as there are seven different cellular dehy-

drogenases that are known to bind NADH in glucose metabolism alone, with

each of them haviing its own specific effect on the NADH steady state and

time-resolved properties, it would be hard to determine the free NADH con-

centration from a signal that is a sum of various decays and different amounts

of spectral shifts. To get around these problem, we use coherent control spec-

troscopy to discriminate free and enzyme-bound NADH. We can rapidly de-

termine the state of NADH without measuring the spectrum or fluorescence

decay time by illuminating the sample with different pulse shapes in succession.

As mentioned above, there are multiple enzymes that can bind NADH, here

we have selected free vs. mMDH-bound NADH as an example for coherent

control 2PF spectroscopy.
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3.2.2 π scans on NADH

Figure 3.4 shows the normalized two-photon fluorescence as a function of π

phase step position for the pure NADH solution and for NADH+MDH mix-

ture. Details of the sample preparation are described in Appendix A. The left

and right panels in Figure 3.4 correspond to data taken in two different runs.

Even though the detailed shape of the π scan traces can vary from day to day,

the main discrimination feature remains. The primary feature in the π scan

traces for both the free and enzyme-bound NADH is the ”double-minimum”

whose relative depth systematically changes with the enzyme binding fraction.

In the left panel, the dip positions are at 767 and 787 nm (laser spectrum cen-

tered at 778 nm), while in the right panel the positions are 768 and 779 nm

(laser spectrum at 775 nm). In both cases, the short-wavelength minimum

becomes less pronounced with higher MDH concentration. A natural choice

of two pulse shapes to selectively excite free or bound NADH would be the

pulse shape with the spectral phase jump located at each of the two minima

in the π phase scan. As shown in Figure 3.5, the relative strength between the

short-wavelength and long-wavelength minima raises with increasing binding

fraction. The inset shows the dip ratio vs. enzyme concentration for measure-

ments performed on different days, where the monotonic increase in the ratio

is consistent over separate measurements. This parameter scan is sensitive to

as low as 3% of binding, with the sensitivity largely depends on the amount

signal averaging one can afford to perform. One possible explanation to the

day to day variations in the π scan traces is that the π scan curves are sensitive

to pulse chirp and the exact chirp value depends on the positioning of the cell

with respect to the PMT.

To understand why π scan curves vary from day to day, we illuminated

pure NADH solution with transform-limited and chirped pulses and recorded

its 2PF as a function of π step position. The red curve in Figure 3.6 shows

laser pulse duration vs. the second compressor position of our chirped pulse

amplifier system. The pulse duration reaches a minimum (∼ 30 fs) when it

is compressed and exceeds 100 fs when either positive or negative chirp has

been introduced to the pulse. The depth of the double-minima either increases

(third blue curve from right) or degenerates to a single peak (fifth blue curve

from right) when the pulse is lengthened from 30 fs to 70 fs. The π scan

28



760 780 800
0.6

0.7

0.8

0.9

1

1.1

π Step Position (nm)

Fl
uo

re
sc

en
ce

 Y
ie

ld
 (a

.u
.)

 

 

Pure NADH 
NADH 27 µM
+ MDH 25 µM

760 780 800

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

π Step Position (nm)

Fl
uo

re
sc

en
ce

 Y
ie

ld
 (a

.u
.)

 

 

Pure NADH
NADH 27 µM
+ MDH 15 µM

Figure 3.4: Normalized fluorescence as a function of π step position for pure
NADH (solid red) and mMDH-bound NADH (dashed blue) solutions. The
left and right panels are measurement from different days. Even though the
details of the curves vary from day to day, the main discrimination feature
remains, that the dip at the longer wavelength becomes more prominent as
the binding ratio increases.
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Figure 3.5: Ratio of the fluorescence signal at the short-wavelength minimum
to that at the long-wavelength minimum vs. mMDH concentration. The
binding fraction is shown on the top of the graph. The error bars show the
standard deviation of the mean for repeated measurements. The inset shows
the dip ratio vs. enzyme concentration for data take on different days (blue
and green curves). The two curves have the same shape but are level-shifted.
The absolute dip ratio changes from day to day because of different chirp in
the excitation laser pulse, but the relative change in the dip ratio vs. enzyme
concentration is preserved.
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traces for NADH solution changes from ”double-minima” (bottom blue curve)

to more structured curves when the excitation pulses are stretched to 200 fs.

Since we are imaging fluorescence from a thick sample (path length 10 mm),

the pulse undergoes moderate dispersion within the sample, and a perfectly

transform-limited pulse is not preserved. A 35 fs long laser pulse at wavelength

800 nm will be stretched to 50 fs long after going through a 10 cm thick glass.

The dispersion caused by the same thickness of water will be slightly smaller.

Depending on where we place the PMT with respect to the cuvette, we are

collecting 2PF from different segment of the NADH solution which experiences

pulses of different amount of chirp. However, as illustrated in the inset of

Figure 3.5, the control was not affected by these day-to-day changes. As long

as the excitation pluse is nearlly transform-limited, the ratio between the two

dips always changes monotonically with NADH-enzyme binding ratio.

Figure 3.6: π scan traces vs. chirp for pure NADH. The red curve indicates
the pulse duration of chirped pulses. The blue curves are the corresponding
π scan data for a pure NADH solution. The double-minima feature in the π
scan curve became more structured as extra chirp was added to a transform
limited pulse.
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Another way to highlight the selective excitation of different forms of

NADH with shaped pulses is to examine the histogram distributions for fluo-

rescence ratio between two pulse shapes (fluorescence by excitation pulse with

a π phase step at the longer-wavelength dip / fluorescence by excitation pulse

with a π phase step at the shorter-wavelength dip) for both free (Figure 3.7,

shaded pink) and enzyme-bound (solid blue) NADH. Each histogram depicts

the number of measurements recorded that resulted in a given ratio of fluo-

rescence for the two pulse shapes located at each of the two minima in the

π phase scan. The peaks were constructed from 100 measurements, with 500

laser shots in each measurement. While this measurement took 50 seconds to

complete with our 1 kHz amplifier, a similar measurement with a high repe-

tition rate laser (e.g. our Ti:Sapphire oscillator with a repetition rate of 88

MHz) would take less than 0.6 s. We noted that the absolute dip ratio can

change from day to day as shown in the inset of Figure 3.5, however, for a

given laser spectrum, the ratio only depends on the MDH concentration. The

histogram peaks are well separated by more than 3σ, indicating that the two

pulse shapes can efficiently discriminate between the two forms of NADH in

the presence of laser and sample fluctuations.

To further demonstrate the π phase scan technique is sensitive to the

NADH-enzyme binding ratio, we ran π-scan measurements on NADH solu-

tions at different temperatures. Like all chemical reactions, the NADH-enzyme

binding ratio is sensitive to the change in temperature. It decreases at higher

temperature. Figure 3.8 shows the π scan traces for NADH solution taken

at room temperature and at 40 ◦C. The left panel is data for NADH-MDH

mixture, and the right panel is for pure NADH solution. We started from

measurement at room temperature (blue curve), and slowly warmed up the

solution temperature by water bath. At 40 ◦C, the dip at longer wavelength

becomes slightly less prominent for the mixture (red dots), which indicates less

binding. As we cooled down the solution back to room temperature, the dip

depth almost recovered back to the earlier value (green dashed), which suggests

that the binding/un-binding process induced by the change in temperature is

reversible. The right panel of Figure 3.8 shows the blank measurements on

pure NADH solution. The shape of the π scan traces is independent of tem-

perature. From these two measurements, we conclude that the π phase scan
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Figure 3.7: Histogram distributions for fluorescence ratio between two pulse
shapes for both free (shaded pink) and enzyme-bound (solid blue) NADH.
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technique can detect minuscule variations in the binding ratio caused by tem-

perature fluctuations, and it is not because of damage of NADH at higher

temperature.
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Figure 3.8: π scan traces vs. temperature for NADH solutions. Left panel:
blue curve: π scan traces for NADH-MDH mixture at room temperature; red
dots: at 40 ◦C; green dash: cool back to room temperature. Right panel:
blue curve: π scan traces for pure NADH solution at room temperature; red
dots: at 40 ◦C. The dip at longer wavelength becomes less pronounced when
the NADH+MDH mixture is warmed up, indicating less binding, while the
shape of the traces for pure NADH solution at different temperature remain
the same.

The coherent control with shaped pulse techinique is therefore, useful for

discrimination-based microscopy as one can selectively excite different fluo-

rophores by switching bewteen different pulse shapes. It is especially benefi-

cial for functional microscopy that wants to follow molecular function in real

time, because the coherent control approach allows discrimination between flu-

orophores with only a few shaped laser shots and doesn’t require complicated

analysis instrument or optics, or tuning the laser wavelength. Here we have

demostrated the concept of coherent control two-photon spectroscopy achieved

by pulse shape parameterizations on two forms of NADH, the same idea can be

generalized to other 2PF systems, and a closed-loop feedback control approach

should allow even wider application.
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Chapter 4

2D Spectroscopy in the Deep

UV

Traditional linear optical spectroscopy measures the emission and absorption

spectrum of molecular systems. For molecules in condensed media, inhomo-

geneous broadening effect due to a variation of the local environment often

dominates the linear line shapes and makes it difficult to extract structural

information and molecular dynamics from the measurement. Nonlinear op-

tical spectroscopy techniques, e.g. photon echoes (PEs), hole burning, and

phase-locked pump-probe (PLPP) absorption, are used to selectively elim-

inate inhomogeneous broadening. Because these techniques measure third-

order molecular response as a function of time delay between the three pulses

in the case of PEs and PLPP or the frequencies of the two excitation pulses

in the case of hole burning, they are in general referred to as 2D spectroscopy.

As mentioned briefly in Chapter 2, 2D electronic and vibrational spectroscopy

has been widely used to study molecular structures and energy transfer, and

there is an increasing interest in understanding DNA excited state relaxation

dynamics with 2D UV spectroscopy. In this chapter we will first introduce the

theory of 2D spectroscopy and compare different methods for collecting 2D

spectra. Then we review earlier studies on the ultrafast non-radiative decay

routes for UV-excited monomeric DNA bases using two other UV femtosecond

laser spectroscopic techniques- transient absorption (TA) and fluorescence up-

conversion (FU). Finally, we compare 2D UV spectrum of adenine and uracil in

solution, while both molecules show excited state absorption (ESA) for short
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times (< 100 fs), and ground state bleach (GSB) extending for long times (> 1

ps), uracil shows an evolution of the 2D spectrum on a 100− 300 fs timescale,

which adenine does not. We interpret this difference between adenine and

uracil in terms of the slope of the excited state potential energy surface near

the Frank Condon (FC) region [50–62].

4.1 Theory

In Chapter 3, we have explained two-photon absorption probability with time-

dependent perturbation theory in Hilbert space using wavefunctions, in this

chapter, we introduce the density matrix and further generalize time-dependent

perturbation theory to higher order process [63]. The density operator can be

used to describe ensemble averages through a mixed state and to construct

a description of linear and nonlinear optical spectroscopy that maintains the

time orderings of various interactions.

4.1.1 Density operator

An ensemble which can be characterized by a wavefunction |ψ〉 is said to be a

pure state. According to the postulates of quantum mechanics, the system is

then completely defined. The expectation value of any operator A is given by:

〈A(t)〉 = 〈ψ(t)|A|ψ(t)〉 (4.1)

If |ψ(t)〉 is represented with a set of eigenstates {|n〉}, |ψ(t)〉 =
∑
n

Cn(t)|n〉,

Eq. 4.1 becomes:

〈A(t)〉 =
∑
n,m

Cn(t)C∗m(t)〈m|A|n〉 ≡
∑
n,m

Cn(t)C∗m(t)Amn (4.2)

Here we introduce the density operator formalism, proposed by J. von Neu-

mann in 1927, where

ρ ≡ |ψ(t)〉〈ψ(t)| =
∑
n,m

Cn(t)C∗m(t)|n〉〈m| ≡
∑
n,m

ρnm(t)|n〉〈m|

ρnm(t) ≡ Cn(t)C∗m(t) (4.3)
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Eq. 4.2 thus can be written as:

〈A(t)〉 =
∑
n,m

Amnρnm(t) ≡ Tr[Aρ(t)] (4.4)

the expectation of an operator can be expressed simply as the trace of product

of the operator and the density matrix. In most cases, however, a general state

of a quantum system may not be pure, and the precise state of the system is

unknown. The density matrix formalism can be used to describe the system in

the statistical sense. Consider an ensemble of systems with a given probability

Pk to be in the quantum state |ψk(t)〉. The corresponding density operator is

defined by

ρ ≡
∑
k

Pk|ψk(t)〉〈ψk(t)| (4.5)

where the fractional populations satisfy the normalization condition∑
k

Pk = 1 (4.6)

Suppose we make a measurement on the ensemble of an observable A, the

ensemble average of A naturally becomes

〈A(t)〉 =
∑
k

Pk
∑
n,m

Ck
n(t)Ck∗

m (t)Amn (4.7)

4.1.2 Perturbation expansion

So how does the density operator ρ evolve with time? In Chapter 3, we intro-

duced time-dependent perturbation theory to solve the Schrödinger equation

for wavefunctions, where

|ψI(t)〉 = |ψI(t0)〉+
∞∑
n=1

(
−i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

VI(τn)VI(τn−1) . . . VI(τ1)|ψI(t0)〉 (4.8)
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Similarly, we can define the density matrix in the interaction picture:

ρI(t) = |ψI(t)〉〈ψI(t)|

= U †0(t, t0)|ψS(t)〉〈ψS(t)|U0(t, t0)

= U †0(t, t0)ρS(t)U0(t, t0) (4.9)

and use the facts that (1) the time evolution of |ψS(t)〉 follows the Schrödinger

equation ∂
∂t
|ψS(t)〉 = − i

~H|ψS〉, (2) ∂
∂t
U †0 = −i

~ H0U
†
0 , and (3) U0 and H0 com-

mute. The time derivative of the density operator is thus

∂ρI(t)

∂t
=

∂U †0
∂t
|ψS(t)〉〈ψS(t)|U0 + U †0 |ψS(t)〉〈ψS(t)|∂U0

∂t

+ U †0

(
∂

∂t
|ψS(t)〉

)
〈ψS(t)|U0 + U †0 |ψS(t)〉

(
∂

∂t
〈ψS(t)|

)
U0

= − i
~
H0U

†
0 |ψS〉〈ψS|U0 −

i

~
U †0 (H0 + V ) |ψS〉〈ψS|U0

+
i

~
U †0 |ψS〉〈ψS| (H0 + V )U0 +

i

~
U †0 |ψS〉〈ψS|U0H0

= − i
~
U †0V U0U

†
0 |ψS〉〈ψS|U0 +

i

~
U †0 |ψS〉〈ψS|U0U

†
0V U0

= − i
~

[VI , ρI ] (4.10)

which is known as the Liouville- von Neumann equation. In the Schrödinger

picture, the interaction Hamiltonian V (t) = −µ · Ẽ(t). In the interaction

picture, it becomes VI = U †0V U0 = −µI · Ẽ(t), where µI corresponds to the

time-dependent dipole operator in the interaction picture:

µI(t) = U †0(t, t0)µSU0(t, t0) (4.11)

In the weak field limit, we can find a solution to ρI by time-dependent

perturbation theory.

ρI(t) = ρI(t0) +
∑∞

n=1

(−i
~

)n ∫ t
t0
dτn
∫ τn
t0
dτn−1 . . .

∫ τ2
t0
dτ1

[VI(τn), [VI(τn−1), . . . [VI(τ1), ρI(t0)] . . . ]] (4.12)

where τj with t ≥ τn ≥ · · · ≥ τ1 ≥ t0 represent the actual time of the interac-
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tions. Going back to the Hilbert space

ρ(t) = ρ(t0) +
∞∑
n=1

(
−i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

U0(t, t0)[VI(τn), [VI(τn−1), . . . [VI(τ1), ρI(t0)] . . . ]]U †0(t, t0)

= ρ(t0) +
∞∑
n=1

(
−i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1Ẽ(τn)Ẽ(τn−1) . . . Ẽ(τ1)

U0(t, t0)[µI(τn), [µI(τn−1), . . . [µI(τ1), ρI(t0)] . . . ]]U †0(t, t0) (4.13)

4.1.3 Polarization and nonlinear response function

Now we proceed to describe the interaction of a non-relativistic quantum sys-

tem with the electromagnetic field. The polarization density corresponds to

the induced and permanent electric dipole moment in a system. It is controlled

by light-matter interaction and inter-molecular forces and can be respresented

by the expectation value of the dipole operator µ:

P̃(r, t) = Tr[µρ(t)] = 〈µρ(t)〉 (4.14)

We now expand the polarization in powers of the electric field Ẽ(t) (Ẽ(t) =

E(t)e−iωt + E∗(t)eiωt) to obtain

P̃ = ε0

(
χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + . . .

)
(4.15)

where χ(n) are the nth order optical susceptibilities. Comparing Eq. 4.15 with

Eqs. 4.13 and 4.14 for the terms in powers of the electric field Ẽ(t), we obtain

the nth order polarization

P̃(n)(r, t) = 〈µρn(t)〉

=

(
−i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1Ẽ(τn)Ẽ(τn−1) . . . Ẽ(τ1)

〈µU0(t, t0)[µI(τn), [µI(τn−1), . . . [µI(τ1), ρI(t0)] . . . ]]U †0(t, t0)〉

=

(
−i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1Ẽ(τn)Ẽ(τn−1) . . . E(τ1)

〈µI(t)[µI(τn), [µI(τn−1), . . . [µI(τ1), ρI(t0)] . . . ]]〉

(4.16)

39



Here we introduce another set of time variables as depicted in Figure 4.1

Figure 4.1: Time ordering

τ1 = 0

t1 = τ2 − τ1

t2 = τ3 − τ2

...

tn = t− τn
(4.17)

and transform Eq. 4.16 to the following equation:

P̃(n)(r, t) =

∫ ∞
0

dtn

∫ ∞
0

dtn−1 . . .

∫ ∞
0

dt1S
(n)(tn, tn−1, . . . , t1)

Ẽ(r, t− tn)Ẽ(r, t− tn − tn−1)Ẽ(r, t− tn − tn−1 · · · − t1)

(4.18)

with S(n)(tn, tn−1, . . . , t1) the nth order nonlinear response function, carrying

the complete microscopic information for the calculation of optical measure-

ments.

S(n)(tn, tn−1, . . . , t1) ≡
(
−i
~

)n
θ(t1)θ(t2) . . . θ(tn)

〈µI(tn + · · ·+ t1)[µI(tn−1 + · · ·+ t1), [. . . [µI(t1)[µI(0), ρI(−∞)]] . . . ]]〉

(4.19)

θ(t)

1 if t ≥ 0

0 if t < 0
(4.20)
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θ(t) is the heaviside function to ensure time ordering.

4.1.4 n-wave mixing signal

The nth order polarization described in Eq. 4.18 is related to a new generated

field by the Maxwell equation:

∇×∇× Ẽ(r, t) +
n2

c2

∂2Ẽ(r, t)

∂t2
= −4π

c2

∂2[
∑

n=2,3,... P̃
(n)(r, t)]

∂t2
(4.21)

with vector fields:

Ẽ(r, t) =
n∑
j=1

[Ej(r, t)exp(ikjr − iωjt) + E∗j(r, t)exp(−ikjr + iωjt)] (4.22)

Here we separate the linear and nonlinear polarization terms in Eq. 4.21,

where the linear polarization is denoted by ”n” in the 2nd term on the left-

hand-side, with kj =
ωj
c
nj. The nonlinear polarization in Eq. 4.21 (the term

on the right-hand side) can be expanded as:

P̃(n)(r, t) =
∑
s

P(n)
s (t)exp(iksr − iωst) + c.c. (4.23)

where s refers to different nonlinear pathways, and ks and ωs are the corre-

sponding combination of the incoming wavevectors and frequencies.

ks = ±k1 ± k2 ± k3 · · · ± kn

ωs = ±ω1 ± ω2 ± ω3 · · · ± ωs (4.24)

To simplify the notations, we look at a specific induced polarization with

wavevector ks and omit (n) because the following derivation holds for all nth

(n > 2) order transitions:

P̃(r, t) = Ps(t)exp(iksz − iωst) + c.c. (4.25)

We assume the solution for Eq. 4.21 is a field with wavevector k′s:

Ẽ(r, t) = Es(z, t)exp(ik′sz − iωst) + c.c. (4.26)
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where

|k′s| ≡
ωs
c
ns (4.27)

After plugging in Eqs. 4.26 and 4.25 into Eq. 4.21 and assuming the the

polarization has a slowly varying envelope in time compared with the optical

period: ∣∣∣∣ ∂∂tPs(t)

∣∣∣∣� |ωsPs(t)| (4.28)

the right-hand-side of Eq. 4.21 becomes

−4π

c2

∂2P̃s(t)

∂t2
=

4πω2
s

c2
Ps(t)exp(iksr − iωst) + c.c. (4.29)

To simplify the left-hand-side of Eq. 4.21, we first apply the slowly varying

amplitude approximation for the field envelope Es(z, t)∣∣∣∣ ∂2

∂z2
Es(z, t)

∣∣∣∣� ∣∣∣∣k′s ∂∂zEs(z, t)

∣∣∣∣ (4.30)

and replace ∇×∇× with −∇2, the left-hand-side of Eq. 4.21 becomes:

∇×∇× Ẽ(r, t) +
n2

c2

∂2Ẽ(r, t)

∂t2

= −2iks
∂E(r, t)

∂z
exp(iksr − iωst)− |ks|2E(r, t)exp(iksr − iωst)

+
n2
sω

2
s

c2
E(r, t)exp(iksr − iωst) + c.c.

= −2iks
∂E(r, t)

∂z
exp(iksr − iωst) + c.c. (4.31)

Combining Eqs. 4.29 and 4.31, we get

iks
∂E(r, t)

∂z
= −2πω2

s

c2
Ps(t)exp[i(ks − k′s)r] (4.32)
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From Eq. 4.32, it is obvious that the induced nonlinear field strength E(r, t)

is directly in proportional to the nonlinear polarization amplitude Ps(t), i.e.

E(r, t) ∝ iωsP
(n)
s (r, t) (4.33)

4.1.5 Linear response

It is obvious from Eq. 4.19 that for nth order process, S(n) contains 2n terms

when the commutators are evaluated explicitly. However, only half of the 2n

terms are independent, and the other half is simply their complex conjugates.

We now expand the linear response S(1):

S(1)(t1) =
−i
~
θ(t1)〈µI(t1)[µI(0), ρI(−∞)]〉

=
−i
~
θ(t1) (〈µI(t1)µI(0)ρI(−∞)〉 − 〈µI(t1)ρI(−∞)µI(0)〉)

=
−i
~
θ(t1) (〈µI(t1)µI(0)ρI(−∞)〉 − 〈ρI(−∞)µI(0)µI(t1)〉)

(4.34)

We can illustrate the above two processes with double-sided Feynman diagrams

[39]:

The rules for the Feynman diagrams are:

1. The density operator is represented by two vertical lines, the left one is the

ket, the right one the bra.

2. Time is running from bottom to top vertically.

3. Each arrow corresponds to an interaction with the light field. The last

arrow refers to emission of the signal.

4. Each diagram has a factor (−1)k, where k is the number of interactions on
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the bra. This is because each time the interaction µI in a commutator acts

from the right, it carries a minus sign. The last emission is excluded from this

rule, because the last interaction does not come from a term in a commutator.

5. An arrow pointing to the right labeled as ωj represents a field Eje
i(−ωjt+kj ·r+φ).

An arrow pointing to the left and labeled ωj represents an field E∗je
i(ωjt−kj ·r−φ).

The emitted signal has frequency and wavevector the sum of the input frequen-

cies and wavevectors with their appropriate signs.

6. An arrow pointing towards the diagram corresponds to excitation of the ket

or bra, and an arrow pointing away from the diagram refers to de-excitation.

7. The last interaction must end in a population state, e.g. in the diagram for

the linear absorption, the final state is the ground state |g〉〈g|.
〈µI(t1)µI(0)ρI(−∞)〉 describes a system in |g〉〈g| that absorbs a photon

at t = 0, and the coherence |e〉〈g| evolves until t = t1 when the system

relaxes back to the ground state. The response function 〈µI(t1)µI(0)ρI(−∞)〉
is constructed as:

• ρ(−∞) = ρgg

• At t=0, light interacts with the medium and generates an off-diagonal

matrix element ρeg(0). The probability of this happening is proportional

to the transition dipole moment µeg.

• µeg(t) evolves with time from t = 0 to t1

ρeg(t) ∝ µeg(t) = µege
−iωegt1e−Γt1 (4.35)

• At t = t1, the medium is de-excited back to ground state. This process

is proportional to µeg.

S(1)(t1) ∝ µ2
ege
−iωegt1e−Γt1 (4.36)

• Finally, assuming Ẽ(t− t1) = |E(t− t1)|(e−iωt+eiωt) and using Eq. 4.36,
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the first order polarization is

P (1)(t) =
−i
~

∫ ∞
0

dt1E(t− t1)S(1)

∝ −i
~

∫ ∞
0

dt1|E(t− t1)|(e−iωt + eiωt)µ2
ege
−iωegt1e−Γt1

=
−i
~
µ2
eg(e

−iωt
∫ ∞

0

dt1|E(t− t1)|ei(ω−ωeg)t1e−Γt1

+ eiωt
∫ ∞

0

dt1|E(t− t1)|e−i(ω+ωeg)t1e−Γt1) (4.37)

We note that for excitation near resonance, the light frequency is close

to the energy gap ω ≈ ωeg, the term ei(ω−ωeg)t1 is slowly varying, while

the term e−i(ω+ωeg)t1 oscillates much faster. The second integral can

be neglected as long as the variation in the envelope of E(t) is also

slow compare to its carrier frequency. The above condition is called

the rotating wave approximation. The excitation pulse is centered at t1

before the spontaneous emission.

4.1.6 Third-order response function

In a centrosymmetric medium, the even-order response functions disappear

because of inversion symmetry in the material. The lowest non-zero nonlinear

response function for an isotropic system is therefore S(3). Following Eq. 4.18

and 4.19, S(3) can be written as:

S(3)(t1) =

(
−i
~

)3

θ(t1)θ(t2)θ(t3)〈µI(t3 + t2 + t1), [µI(t2 + t1),

[µI(t1), [µI(0), ρI(−∞)]]]〉

=

(
−i
~

)3

θ(t1)θ(t2)θ(t3)
4∑

α=1

[Rα(t3, t2, t1)−R∗α(t3, t2, t1)](4.38)

45



where Rα and R∗α are different Liouville pathways towards third-order re-

sponse:

4∑
α=1

[Rα(t3, t2, t1)−R∗α(t3, t2, t1)]

= 〈µI(t3 + t2 + t1)µI(0)ρI(−∞)µI(t1)µI(t2 + t1)〉 ⇒ R1

+ 〈µI(t3 + t2 + t1)µI(t1)ρI(−∞)µI(0)µI(t2 + t1)〉 ⇒ R2

+ 〈µI(t3 + t2 + t1)µI(t2 + t1)ρI(−∞)µI(0)µI(t1)〉 ⇒ R3

+ 〈µI(t3 + t2 + t1)µI(t2 + t1)µI(t1)µI(0)ρI(−∞)〉 ⇒ R4

− 〈µI(t3 + t2 + t1)µI(t2 + t1)µI(t1)ρI(−∞)µI(0)〉 ⇒ R∗1

− 〈µI(t3 + t2 + t1)µI(t2 + t1)µI(0)ρI(−∞)µI(t1)〉 ⇒ R∗2

− 〈µI(t3 + t2 + t1)µI(t1)µI(0)ρI(−∞)µI(t2 + t1)〉 ⇒ R∗3

− 〈µI(t3 + t2 + t1)ρI(−∞)µI(0)µI(t1)µI(t2 + t1)〉 ⇒ R∗4

(4.39)

For a two-level system, pathways R1−R4 can be illustrated by the Feynman

diagrams in Figure 4.2. For example, R1 corresponds to the following pathway:

at t = 0, absorption of light at frequency ω1 on the left ket of the diagram

brings the vertex from the ground state |g〉 to the excited state |e〉. The

amplitude of the transition is in proportional to − i
~〈e|E(t)e−iω1t|g〉|t=0. At t =

t1, absorption at frequency ω2 on the right bra of the diagram brings the vertex

from |g〉 to |e〉, whose amplitude is in proportional to i
~〈g|E

∗(t)eiω2t1|e〉. At t =

t1+t2, the emission at frequency ω3 can be expressed as i
~〈e|E

∗(t)e−iω3(t1+t2)|g〉.
Finally, at t = t1 + t2 + t3, the emitted signal has frequency at ωs = −ω1 +

ω2−ω3. Similar interpretation can be generalized to other Liouville pathways.

4.2 Two-dimensional spectroscopy

There are various third-order spectroscopy techniques, e.g. photon echoes,

hole burning and pump-probe absorption that utilize different laser pulse ge-

ometries and sequences for measuring the third-order response of a sample. In

this section, we will first introduce the experimental geometries of each tech-

nique. Then we will compare different techniques after constructing the for-
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R2 R3 

R4 

Figure 4.2: Liouville pathways four-wave-mixing in a two-level system. R1:
non-rephasing (NR), stimulated emission (SE). R2: rephasing (R), SE. R3:
rephasing, ground state bleaching (GSB). R4: non-rephasing, GSB.
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malism of each spectroscopy. The Fourier transform of the third-order response

S(3)(t1, T, t3) leads to the two-dimensional spectrum S(3)(ω1, T, ω3) which re-

veals homogeneous and inhomogeneous broadening in a medium, as well as

how energy transfers between transition dipoles. Two Liouville pathway se-

lecting methods, phase-matching and phase-cycling will also be discussed in

this section.

The most intuitive way to probe third-order optical response is to excite

with three femtosecond excitation pulses in full collinear geometry [28] (Figure

4.3(A)) or boxcar geometry [64–66] (Figure 4.3(B)). In the collinear geometry,

a series of phase-locked pulses are generated by a pulse shaper and travel

along the same path before reaching the sample. In this case, the relative

phase stability between pulses is well-maintained as all pulses experience the

same amount of jitters in the optics. Because the excitation pulse energy is

orders of magnitude higher than S(τ1, τ2), where τ1 refers to delay between

the first and the second pulses and τ2 refers to delay between the second and

the third pulses, it can saturate the detector easily if one directly measures

the absorption spectrum. Generally, the third-order fluorescence spectrum is

collected orthogonal to the beam propagation axis. For samples with fast non-

radiative excited-state decays like DNA, it is challenging to generate enough

fluorescence without photo-damaging the samples.

2D spectroscopy in boxcar or four-wave-mixing (FWM) geometry, on the

other hand, excites the sample with three ultrafast pulses of different wavevec-

tors k1, k2, and k3, and measures third order response along the fourth di-

rection. An important advantage of the boxcar geometry is that the signal

is generated in a new direction (ksa, ksb) and has essentially no background.

The third-order response can be measured directly or mixed with a local oscil-

lator beam ẼLO, which has the same wavevector. The later method is called

heterodyne detection. Ideally, if the local oscillator is noise-free, heterodyne

detection can enhance the signal-to-noise ratio (S/N). In a boxcar geometry,

the pulse train is either generated by spatially separating the pulses with a

series of beam splitters or by a two-dimensional pulse shaper [66]. However,

both methods are complicated to implement in the deep UV. As discussed

in Chapter 2.4, extra diffractive [25, 26] and active interferometric stabiliza-

tion [27] optics are required to maintain phase stability for a conventional
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Figure 4.3: Schematic layouts of 2D spectroscopy, where kn (n = 1, 2, 3)
are the excitation, kLO the local oscillator, and ks the emission wavevectors.
(A) Collinear geometry: fluorescence orthogonal to the excitation wavevec-
tors is collected. (B) Four-wave mixing or boxcar geometry: rephasing or
non-rephasing signals are emitted at the phase-matching angle, where an local
oscillator helps to retrieve its phase. (C) Hole-burning method: the transmis-
sion probe spectrum is measured after the excitation with a narrow bandwidth
pump. (D) Pump-probe geometry using a pulse shaper.
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interferometer-based setup, and two-dimensional pulse shapers in the deep

UV are not available.

The third approach, hole burning spectroscopy, is to excite a group of

molecules with in a broad inhomogeneous line using a narrow bandwidth pump

and then probe its absorption spectrum S(T, ωprobe) with a broadband pulse

as depicted in Figure 4.3(C). A full 2D spectrum S(ωpump, T, ωprobe) can be

mapped out by scanning the pump frequency ωpump across the spectral region

of interest, and the 2D relaxation spectrum is constructed by collecting 2D

spectra at several different pump probe delays T. This hole burning technique

does not require phase stability between the pump and probe, but it sacri-

fices time resolution for spectral selectivity as the pump pulse is stretched to

picoseconds when its bandwidth is narrowed down to less than the molecular

homogeneous linewidth. The measured 2D spectrum is therefore averaged over

time delays.

Our approach, the three-pulse phase-locked pump-probe spectroscopy (Fig-

ure 4.3(D)), is a combination of the hole burning method and collinear geom-

etry. It utilizes a pump-probe geometry where the collinear pump pulse pair

(k1 = k2) is generated by a pulse shaper [30, 32], and the probe pulse serves

simultaneously as the third excitation and the local oscillator. As will be ex-

plained in more detail later, the two pump pulses are inherently phase-locked

and different phase-cycling conditions can be applied to select specific Liou-

ville pathways [28] and to remove transient absorption background [32]. As

opposed to the hole burning method, in this approach, the spectral resolution

is determined by the delay between the first two pulses and not by the pulse

bandwidth, therefore, the excitation pulses are allowed to be short to achieve

good temporal resolution without sacrificing the spectral resolution.

4.2.1 Photon echo spectroscopy

We follow the derivations in [63, 67–70] to introduce the theoretical description

of photon echo, hole burning, and three-pulse pump-probe spectroscopy. The

most general external field for a four-wave-mixing process is

Ẽ(r, t) = E1(t)ei(ω1t−k1·r−φ1) + E2(t− τ)ei(ω2t−k2·r−φ2)

+ E3(t− τ − T )ei(ω3t−k3·r−φ3) + c.c. (4.40)
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where Ej, j = 1, 2, 3 is the temporal envelope of the jth incident pulse, each

has wavevector kj and mean frequency ωj. As illustrated in Figure 4.3(B),

the three pulses are delayed by time intervals T and τ . The first two pulses

of the three-pulse sequence form a grating in the medium, and the third pulse

diffracts off the grating. To satisfy different phase-matching conditions, the

induced field has two different wave vectors: ksa and ksb. After the third

excitation pulse, the stimulated photon echo (SPE) signal propagating along

ksa = −k1 + k2 + k3. The other signal following different Liouville pathways

is generated towards the direction of ksb = k1 − k2 + k3.

Figure 4.2 illustrates the Liouville pathways of four-wave-mixing process

for a two-level system in a phase space of the density matrix. Because in

pathways R1 and R2, the response function describes the dynamics of the

excited-state population ρee created by the first two excitation pulses, R1 and

R2 are related to stimulated emission from the electronically excited-state.

In pathways R3 and R4, the response function describes the dynamics of the

ground state population ρgg created by the the first two excitation pulses, and

is related to ground state bleaching.

Combining Eqs. 4.18 and 4.40 and invoking the rotating wave approxima-

tion, the photon echo polarization is described by

P̃
(3)
SPE(ka, t, T, τ) =

(
−i
~

)3 ∫ ∞
0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1

× [R2(t3, t2, t1) +R3(t3, t2, t1)]χ(t3 − t1)

× E3(t− τ − T − t3)E2(t− τ − t3 − t2)E∗1(t− t3 − t2 − t1)

× exp[i(ω3 + ω2 − ω1)t3 + i(ω2 − ω1)t2 − iω1t1]exp[i(−φ1 + φ2 + φ3)]

(4.41)

Here χ(t3 − t1) is the inhomogeneous broadening because different molecules

are imbedded in different local environments which affect the transition fre-

quencies of chromophores. Note that χ(t) here is different from the nth order

optical susceptibilities χ(n) defined by Eq. 4.15. The formalism of inhomo-

geneous broadening will be explained in detail in Appendix B. There are two

pathways R2 and R3 satisfying the phase-matching condition for stimulated

photo echoes, which can be described as follows. At t = 0, the first pulses

excites the initial ground state density matrix ρgg to an optical coherence ρge,
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which evolves according to the time evolution operator. At the end of the

time interval ∼ τ , the coherence acquires a phase ωegτ . The second interac-

tion at t = τ , produces population in the excited (R2: ρee) or ground (R3:

ρgg) states, whose transition probabilities depend on the phase of coherence

relative to the that of the second pulse. At t = τ + T , the third pulse gen-

erates a coherence ρeg that is oscillating in the opposite direction to the first

coherence: e−iωegt. Finally, at t = τ +T + τ , the oscillating terms cancels each

other, a phenomenon called rephasing. If we also assume broad inhomoge-

neous dephasing, i.e. χ(ω) = 1, its Fourier transform pair: χ(t) is essentially

a δ function. The χ(t3 − t1) factor in the SPE process reaches a maximum at

t1 ∼ t3, i.e. t = τ + T + τ . Combining the above two conditions, the echo is

peaked at t = τ and the effect of the inhomogeneous dephasing is eliminated.

For t > τ + T + τ , dephasing starts to kick in, and echo rapidly disappears.

4.2.2 Impulsive limit

In time-resolved nonlinear spectroscopy, we often use pulses that are short

compared to the timescale of the homogeneous dephasing and solvent reorga-

nization processes, but long compared to the oscillation period of the carrier.

Therefore, we can invoke the impulsive limit and approximate the envelope of

the excitation field with a δ function. The external field in Eq. 4.40 is

Ẽ(r, t) = A1δ(t+ T + τ)ei(ω1t−k1·r) + A2δ(t+ T )ei(ω2t−k2·r)

+ A3δ(t)e
i(ω3t−k3·r) + c.c. (4.42)

In the homodyne detection scheme, the stimulated photon echo signal SSPE

is the total integral of the new generated field in the ksa direction.

Combining Eqs. 4.33, 4.41 and 4.42, we obtain:

SSPE(T, τ) ∝
∫ ∞

0

|P (3)
SPE(ksa, t, T, τ)|2dt

=

∫ ∞
0

|R2(t, T, τ) +R3(t, T, τ)|2|χ(t− τ)|2dt (4.43)

Although inhomogeneous broadening is eliminated at t = τ , the signal SSPE

has contributions from all t, and as a result, SSPE is not free of inhomoge-
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neous broadening. In the large inhomogeneous broadening limit, where the

inhomogeneous dephasing time is shorter than other dynamic timescales of

the system, χ(t− τ) ∼ δ(t− τ), Eq. 4.43 becomes

SSPE(T, τ) ∝ |R2(τ, T, τ) +R3(τ, T, τ)|2 (4.44)

4.2.3 Heterodyne detection

In the case of heterodyne detection, the generated field is mixed with a new

local oscillator field of the same wave vector. There are two ways to measure

the signal, either directly, or directing the light into a spectrometer. From

Eqs. 4.41 and 4.33, the heterodyne-detected stimulated photon echo (HSPE)

signal SHSPE is

SHSPE(t, T, τ, φ) ∝
∣∣∣P̃SPE + ẼLO

∣∣∣2
=

∣∣∣P̃SPE

∣∣∣2 +
∣∣∣ẼLO

∣∣∣2 − 2 Im PSPEE∗LO (4.45)

Because the third-order polarization P̃SPE is much smaller than the local

oscillator, the first term in Eq. 4.45 can be neglected. We further assume ẼLO

is constant throughout the measurement, therefore
∣∣∣ẼLO

∣∣∣2 remains constant.

The change in the signal is

SHSPE(t, T, τ, φ)

∝ −2

~3
Im

∫ ∞
−∞

dt4E
∗
LO(t− t4)P

(3)
SPE(ka, t4, T, τ)exp[iφ+ i(ωLO − ωsa)t4]

=
2

~3
Re

∫ ∞
−∞

dt4

∫ ∞
0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1[R2(t3, t2, t1) +R3(t3, t2, t1)]

× χ(t3 − t1)E∗LO(t− τ − T − t4)E3(t− τ − T − t3)

× E2(t− τ − t3 − t2)E∗1(t− t3 − t2 − t1)

× exp[iφ+ i(ωLO − ωsa)t4 + iωsat3 + i(ω2 − ω1)t2 − iω1t1]

(4.46)

where φ is the phase of the local oscillator with respect to the third excitation

pulse. and ωsa = ω3 + ω2 − ω1 is the central frequency of the third-order

polarization. In the impulsive and large inhomogeneous broadening limits and

53



the degenerate case where ω1 = ω2 = ω3 = ωLO, we obtain

SHSPE(t, T, τ, φ) ∝ 2

~3
Re[(R2(t, T, τ) +R3(t, T, τ))eiφ]

=

 2
~3 Re[R2(t, T, τ) +R3(t, T, τ)] for φ = 0

−2
~3 Im[R2(t, T, τ) +R3(t, T, τ)] for φ = π/2

(4.47)

In the second case, the spectrometer performs a Fourier transform of the

fields with respect to t. The measured signal can be written as

SHSPE(ω3, T, τ, φ) =

∫ ∞
−∞

SHSPE(t, T, τ, φ)e−iω3tdt (4.48)

We further Fourier transform SHSPE(ω3, T, τ, φ) with respect to the delay

between the first two pulses τ to obtain the 2D spectrum:

S2D(ω3, T, ω1, φ) =

∫ ∞
−∞

SHSPE(ω3, T, τ, φ)e∓iω1τdτ (4.49)

where ”∓” is for rephasing and non-rephasing diagrams respectively, because

for pathways R2 and R3, the system interacts with a field of positive frequency

ω1, as opposed to a field of negative frequency −ω1 for R1 and R4.

Following the same argument in Section 4.1.4, we note that the response

function for the pure homogeneous rephasing diagrams is:

R2 = R3 ∝ e−iω1t1e−Γget1eiω3t3e−Γegt3 (4.50)

and for the pure homogeneous non-rephasing diagrams is:

R1 = R4 ∝ eiω1t1e−Γegt1eiω3t3e−Γegt3 (4.51)

Combining Eqs. 4.48, 4.49, 4.50 and 4.51, the Fourier transform of Eqs. 4.50
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and 4.51 renders:

R2(ω1, ω3) = R3(ω1, ω3) ∝ 1

i(ω1 − ω)− Γge
· 1

−i(ω3 − ω)− Γeg

R1(ω1, ω3) = R4(ω1, ω3) ∝ 1

−i(ω1 − ω)− Γeg
· 1

−i(ω3 − ω)− Γeg
(4.52)

The rephasing and non-rephasing 2D spectra contain both absorptive and

dispersive contributions and show a phase-twisted line shape along the diag-

onal and anti-diagonal axes respectively [71]. When the rephasing and non-

rephasing spectra are added (i.e. R(ω1, ω3) =
∑
n=1,4

Rn(ω1, ω3)), the dispersive

features will cancel each other to yield a purely absorptive spectrum [71].

4.2.4 Collinear measurement

Another approach to measure photon echo is the phase-locked collinear mea-

surement (Figure 4.3(A)) [28]. As shown in Eq. 4.41, the stimulated photon

echo signal has phase dependence −φ1 + φ2 + φ3. This means that different

Liouville pathways have unique phase dependence on the excitation pulses.

Therefore, in the collinear geometry, even though we cannot isolate pathways

by phase-matching, selected pathways can be eliminated with phase-cycling

[72].

The external field in the collinear measurement is comprised of three phase-

locked pulses with delays τ1 and τ2

Ẽ(t) = E1(t)ei(ω0t−φ1) + E2(t− τ1)ei(ω0t−φ2) + E3(t− τ1 − τ2)ei(ω0t−φ3) + c.c.

(4.53)

where Ej, j = 1, 2, 3 is the temporal envelope of the jth incident pulse. Each

pulse has an extra phase shift φj on top of the carrier phase ω0 · t, where ω0

is the central frequency of the pulses. If the pulses are generated by a pulse-

shaper, the phase difference between two pulses (∆φ) does not necessarily need

to be the natural frequency of the light (ω0) times the delay between the two

pulse (∆T ), but can be shifted to a rotating frame at lower frequency. Because

the pulses and the induced signal are collinear, the direction of the field does

55



not need to be specified.

In the collinear geometry, we are measuring multiple nonlinear process

simultaneously, such as the pump-probe signal that involves excitation by two

of the pulses, and the photon echo that comes from interaction with all three

pulses. In the case of a photon echo process, at t = 0, the first pulse creates

an optical coherence ρge in the ground state density matrix ρgg, which then

evolves according to the time evolution operator. At t = τ1, the second pulse

interacts with the system twice, i.e. it serves simultaneously as the second and

the third pulses in the FWM geometry with T = 0 and leaves the system in

optical coherence ρeg. At delay τ1 + τ2, the third pulse converts the coherence

back to a population of the excited-states [73]. Finally, a fluorescence signal

orthogonal to the excitation wave vectors is measured as a function of τ1 and τ2.

Because each nonlinear process has different phase dependence, by tailoring

the relative phase between pulses, we can selectively eliminate signal from

certain pathways.

We can express the population ρee as a sum of contributions from all pos-

sible nonlinear pathways in a series of terms which have different dependence

on phase of three pulses: ci(φ1, φ2, φ3), and each term has amplitude ai [72]

ρee ∝
∑
i=1,

aici(φ1, φ2, φ3)eiω1τ1eiω2τ2 (4.54)

Here we follow the notations in [28] to label the phase-dependent population

ρee as ρφ1φ2φ3 , where the phase (φ1, φ2, or φ3) can be X = 0, Y = π/2, X̄ = π,

and Ȳ = 3π/2. Note that X and Y refer to the pulses phases as been used in

NMR conventions, but are not used to label the direction of the polarization of

the light. It is obvious from the Feynman diagrams (R2 and R3 in Figure 4.2)

that the photon echo signal has phase dependence ei(−φ1+2φ2−φ3). On the other

hand, signals from other Liouville pathways have different phase dependence.

For example, the pump-probe signal that involves only the first and the third

pulses is independent of φ1 and φ2. Because each pathway has a unique phase-

dependence, we can eradicate contributions from the pump-probe and keep

the PLPP signal with phase-cycling. For example, in a two-step phase-cycling

measurement, we take the difference between the two 2D spectra collected with

(φ1, φ2, φ3) = (0, 0, 0) and (π, 0, 0). Because ρPEXXX = −ρPE
X̄XX

, the amplitude
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of the photon echo peaks is doubled in the two-step phase-cycling signal ρ2:

ρ2 = ρXXX − ρX̄XX (4.55)

while the pump-probe signal is eliminated in the light of ρPPXXX = ρPP
X̄XX

. A 16-

step phase-cycling ρ16, therefore, can remove all other peaks in a 2D spectrum

but the photon echoes [72]:

ρ16 = ρXXX − ρXXX̄ − ρX̄XX + ρX̄XX̄ − ρY XY + ρY XȲ + ρȲ XY − ρȲ XȲ
+ i(ρX̄XȲ − ρX̄XY + ρXXY − ρXXȲ + ρY XX − ρY Xx̄ − ρȲ XX + ρȲ XX̄)

(4.56)

4.2.5 Hole burning spectroscopy

The third method of measuring the third-order response is hole burning (Fig-

ure 4.3(C)). It first excites a group of molecules within a broad inhomogeneous

spectrum with a ”spectrally narrow” pulse, and then measures the change

in absorption of the second probe. The experimental configuration for hole

burning is identical to pump-probe spectroscopy, but the first pulse is much

longer than a femtosecond impulse, because a narrow bandwidth is crucial

for selective excitation [63]. As a result, in hole burning spectroscopy, the

temporal resolution is compromised in order to achieve a good spectral resolu-

tion. Feynman diagrams representing different pathways for the hole burning

measurement are shown in Figure 4.4.

From Eq. 4.41, the hole burning signal can be described as:

S
(3)
HB(T ) ∝ 2

~3
Re

∫ ∞
−∞

dt

∫ ∞
0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1

× {[R2(t3, t2, t1) +R3(t3, t2, t1)]χ(t3 − t1)E∗2(t− T )E2(t− T − t3)

× E1(t− t3 − t2)E∗1(t− t3 − t2 − t1)exp[iω2t3 − iω1t1]

+ [R1(t3, t2, t1) +R4(t3, t2, t1)]χ(t3 + t1)E∗2(t− T )E2(t− T − t3)

× E∗1(t− t3 − t2)E1(t− t3 − t2 − t1)exp[iω2t3 + iω1t1]}

(4.57)
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Figure 4.4: Liouville pathways for pump-probe and hole burning spectroscopy.
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4.2.6 Phase-locked pump-probe spectroscopy

The last approach we introduce in this chapter, phase-locked pump-probe

(PLPP) spectroscopy, is the one we implemented in the lab. It can be thought

of as a three-pulse pump-probe absorption measurement carried out with a

pair of phase-locked pump pulses and optical heterodyne detection. Because

the first two pulses are collinear, k1 = k2, PLPP measures the sum of equally

weighted rephasing and non-rephasing signals, and obtains an absorptive 2D

spectrum [71]. A positive signal represents a decrease in the probe absorption

in the presence of the pump caused by ground state bleaching (GSB), while

a negative spectrum corresponds to an increase in the probe absorption due

to excited-state absorption (ESA). From Eq. 4.41, the induced third-order

polarization in PLPP spectroscopy is:

P̃
(3)
PLPP (t, T, τ, φ)

=

(
−i
~

)3 ∫ ∞
0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1

× {[R2(t3, t2, t1) +R3(t3, t2, t1)]χ(t3 − t1)E3(t− τ − T − t3)

× E2(t− τ − t3 − t2)E∗1(t− t3 − t2 − t1)exp[iω3t3 − iω1t1 − iφ]

+ [R1(t3, t2, t1) +R4(t3, t2, t1)]χ(t3 + t1)E3(t− τ − T − t3)

× E∗2(t− τ − t3 − t2)E1(t− t3 − t2 − t1)exp[iω3t3 + iω1t1 + iφ]}

(4.58)

where φ ≡ φ1 − φ2 is the relative phase between pulse1 and pulse2.

The third pulse Ẽ3 served simultaneously as the third excitation field and

the local oscillator. Empirically, we direct the light into a spectrometer, which

performs a Fourier transform with respect to t and measures the superposition

of Ẽ3 and the new field generated by P̃
(3)
PLPP . From Eqs. 4.33, 4.45, 4.48, and

4.58, the measured spectrum is:

S
(3)
PLPP (ω3, T, τ, φ) ∝ Im[E∗3(ω)P

(3)
PLPP (ω3, T, τ, φ)]

∝ Re[E∗3(ω)[(R2(ω3, T, τ) +R3(ω3, T, τ))e−iφ12

+ (R1(ω3, T, τ) +R4(ω3, T, τ))eiφ12 ]]

(4.59)
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where E∗3(ω) and P
(3)
PLPP (ω3, T, τ, φ) are Fourier transform of E∗3(t) and P

(3)
PLPP (t, T, τ, φ)

respectively.

Note that any noise in the field Ẽ3 will write onto the measured signal. So

instead of increasing the S/N, this heterodyne detection actually introduces

an non-negligible amount of noise. This is why we set up the fourth beam, the

reference, in the setup to account for any common noise in the laser pulses.

Details of the reference beam were described in Section 2.4 .

In this geometry, besides the rephasing and non-rephasing process, the

pump-probe absorption that involves the interactions with one of pump pulses

and once with the probe is also being measured. The actual signal collected

has contribution from PLPP and pump-probe absorption (Spp1 , Spp2):

S(ω3, T, τ, φ) = S
(3)
PLPP (ω3, T, τ, φ) + Spp1(ω3, τ + T ) + Spp2(ω3, T ) (4.60)

Since the two transient absorption signals, unlike the PLPP signal, are in-

dependent of the phase between the two pump pulses φ, they can be elim-

inated with phase-cycling. We follow the same procedure as described in

[32] to remove the TA signal. TA does not depend on the relative phase

between Ẽ1 and Ẽ2, i.e. Spp(φ = 0) = Spp(φ = π). On the other hand,

the PPLP signal S
(3)
PLPP flips sign when φ and φ′ are π out of phase, i.e.

S
(3)
PLPP (φ = 0) = −S(3)

PLPP (φ = π). As a result, subtracting S(φ = π) from

S(φ = 0) removes the transient absorption but makes the PLPP signal twice

as large. We collect two spectra S(φ1 = 0, φ2 = 0) and S(φ1 = 0, φ2 = π)

sequentially at each delay τ , and obtain our final spectrum by combining these

two measurements:

S
(3)
PLPP (ω3, T, τ) = S(φ1 = 0, φ2 = 0)−S(φ1 = 0, φ2 = π) (4.61)

We further Fourier transform Eq. 4.61 with respect to the delay between

the first two pulses: τ to obtain the 2D spectrum S
(3)
PLPP (ω3, T, ω1). A series

of S
(3)
PLPP (ω3, T, ω1) are collected at different T to probe the excited-state

dynamics of the molecules. In later sections, T will be denoted as the pump-

probe delay. In this geometry, because the two pump pulses generated by

the pulse shaper are identical, we cannot distinguish if pulse1 is the leading

pulse, i.e. τ > 0, or vice versa. Therefore, the spectrum measured by the
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spectrometer is symmetric with respect to τ = 0, i.e. S
(3)
PLPP (ω3, T, τ) =

S
(3)
PLPP (ω3, T,−τ). Because S

(3)
PLPP (ω3, T, τ) is real and symmetric, its Fourier

transform spectrum S
(3)
PLPP (ω3, T, ω1) is also real. This is consistent with the

fact that PLPP is measuring equally weighted rephasing and non-rephasing

signals and should yield an absorptive spectrum [71].

4.2.7 Recovering rephasing and non-rephasing spectra

from PLPP measurements

Phase-cycling also helps to retrieve the rephasing and non-rephasing spectra

from PLPP measurements. Set the phase between the pump pulse in Eq. 4.59

as 0 and π/2:

S
(3)
PLPP (t, T, τ, 0) ∝ R(R)(t, T, τ) +R(NR)(t, T, τ)

S
(3)
PLPP (ω3, T, τ, π/2) ∝ −iR(R)(t, T, τ) + iR(NR)(t, T, τ)

(4.62)

where R(R)(ω3, T, τ) is the rephasing response function, with R(R) = R2 +R3,

and R(NR)(ω3, T, τ) is the non-rephasing response function, with R(NR) = R1 +

R4. The rephasing and non-rephasing response function can be retrieved by

combing S
(3)
PLPP (ω3, T, τ, φ) at φ = 0, π/2 :

R(R)(t, T, τ) ∝ S
(3)
PLPP (t, T, τ, 0) + iS

(3)
PLPP (t, T, τ, π/2)

R(NR)(t, T, τ) ∝ S
(3)
PLPP (t, T, τ, 0)− iS(3)

PLPP (t, T, τ, π/2) (4.63)

Because there will be no third-order polarization if pulse3 interacts with the

sample before the pump pulses, to recover S
(3)
PLPP (t, T, τ, φ) from

S
(3)
PLPP (ω3, T, τ, φ), causality has to be enforced after we performed the inverse

Fourier transform with respect to ω3, i.e., set S
(3)
PLPP (t, T, τ, φ) = 0 for t < 0.

The 2D spectrum for the rephasing/non-rephasing process can be covered by

Fourier transform R(R)(t, T, τ) and R(NR)(t, T, τ) along t and τ .

61



4.2.8 Generating phase-locked pulses with a pulse shaper

In Chapter 2, we mention briefly that phase-locked pulses are generated with

a pulse-shaper, that we apply a programmable amplitude/phase mask with an

acousto-optic modulator (AOM) to shape light in the frequency domain. In

the time domain, two light pulses with delay τ can be expressed as:

Ẽ1(t) = Ae
− t2

τ2
p ei(ω0t+φ1) + c.c.

Ẽ2(t) = Ae
− (t−τ)2

τ2
p ei(ω0t+φ2) + c.c. (4.64)

where 1.18τp is the FWHM of the pulse duration. In the frequency domain,

the pulse are:

Ẽ1(ω) = Aeiφ1(ω)e−
(ω−ω0)2

∆ω2 + c.c.

Ẽ2(ω) = Aeiφ2(ω)e−
(ω−ω0)2

∆ω2 + c.c. (4.65)

For pulses generated by a Michelson interferometer, φ2(ω) = φ1(ω) +ω · τ , but

for pulses generated by a pulse-shaper, the central frequency can be shifted to

a rotating frame ω′ = ω − ωR by the following procedure. From Eq. 2.2, the

two acoustic waveforms to generate two laser pulses with delay τ in a rotating

frame are:

S1(tac) =
1

2
ei(2πftac+φ1)

S2(tac) =
1

2
ei(2πftac+φ2)

φ2(ω) = φ1(ω) + ω′ · τ = φ1(ω) + (ω − ωR) · τ (4.66)

Because the acoustic wave is static to the femtosecond laser pulse, tac can be

thought of as different pixels in the AOM crystal, and different colors in the

light are mapped to different pixels in the crystal:

ω = k · tac + C (4.67)
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where k and C are empirical constants. Combining Eqs. 4.66 and 4.67, the

phase difference between the acoustic waveforms is:

φ2(ω) = φ1(ω) + (ω − ωR) · τ

= φ1(ω) + (k · tac + C − k · tR − C) · τ

= φ1(ω) + k · (tac − tR)τ (4.68)

which means that we can shift the measurement to a rotating frame by simply

moving the starting point of the acoustic carrier wave to a desired AOM pixel

(light frequency).

After introducing various ultrafast nonlinear spectroscopy, in the following

sections, we will introduce results of ultrafast pump-probe and 2D spectroscopy

measurements on DNA bases.

4.3 Ultrafast measurements on DNA bases

DNA, RNA and proteins are the three building blocks of all known forms of

life. For all living organisms except RNA viruses, their genetic information

for development and functioning are stored in the DNA. DNA and RNA are

very similar in structure, both consisting of long strands of simple nucleotide

units. Each nucleotide contains a nucleobase (which will be abbreviated as

DNA/RNA base or simply as base in later sections), a ribose sugar, and a

phosphate group. The information in DNA is stored as a code by four bases:

adenine (A), thymine (T), guanine (G), and cytosine (C). In RNA, uracil (U)

substitutes thymine as one of the four bases. Long before the existence of life

and when there was no ozone layer around Earth to block UV radiation from

the Sun, the DNA/RNA bases emerged at that time were exposed to strong UV

radiation. However, despite the fact that DNA bases absorb strongly in the UV

(for example, Figure 4.5 shows the UV-Vis spectrum of adenine and uracil),

from the simple fact that life successfully evolved from DNA bases, DNA/RNA

bases are highly stable to photochemical decay [35, 74, 75]. In recent years,

because of increasing harmful solar radiation caused by ozone layer depletion,

there is growing interest in studying DNA excited-state dynamics under UV

radiation. Understanding the relaxation dynamics of DNA bases would be

63



the foundation to elucidate the photophysical properties of more complicated

molecules like DNA.

Figure 4.5: Adenine and Uracil UV-Vis spectrum. Both absorbs strongly in
the UV.

Generally, excited-states of molecules are more reactive than the ground

states, and when the DNA bases are driven to singlet excited-states by the

UV radiation, they become prone to damage. For example, photolesions like

pyrimidine dimers can form after excitation, which alter the structure of DNA

and consequently inhibit polymerases and replication. This interference can

lead to mutations, genomic instability, and carcinogenesis [76]. Fortunately,

the quantum yields of photolesion formation are generally much less than 1%

[75], and there exist non-adiabatic processes to convert the electronic energy

to vibrational energy on ultrafast timescales. Early literature frequently de-

scribed the DNA bases as ”nonfluorescent” because of low fluorescence yield,

which indicates that the bases have very short life time. Recent studies sug-

gest that the excited-states are deactivated back the ground state S0 through

nonradiative decay by internal conversion. It has been suggested that there

exist low-lying S0-Sππ∗ conical intersections (where the electronic potential en-

ergy surfaces (PESs) cross) which provide effective channels for deactivation

of the electronic excitation [51] and bring the molecule from the excited-state

back to the ground state rapidly. Here, Sππ∗ (and Snπ∗) are used to describe

the character of the states, and singlet excited-states are denoted as Si where

i=1,2 is the order of the state. Prior ultrafast studies on the DNA bases in the

gas phase include resonance-enhanced multi-photon ionization (REMPI) [77],
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pump-probe mass spectrometry [78], and time-resolved photoelectron spec-

troscopy [79]. For measurements on DNA in solution that are directly re-

lated to our 2D measurement on adenine and uracil in solution, there are UV

transient absorption [74, 80–85] and femtosecond fluorescence upconversion

[85–91].

Ultrafast TA and FU measurements on DNA/RNA in solution have shown

that population in the first bright singlet excited-state Sππ∗ decays rapidly

to the ground state S0 on sub-picosecond timescales via conical intersections

(CIs). Other relaxation pathways on the picosecond time scale include decay

from Sππ∗ to a dark state Snπ∗ , which can also lead to S0 via non-adiabatic

coupling (i.e. conical intersections). FU measurements on uracil [88] and ade-

nine [87] show a rapid decay in the fluorescence for both molecules (100 and

250 fs for uracil and adenine respectively), with the adenine fluorescence also

containing a slow component (8 ps lifetime). The existent of the slower com-

ponent indicates that adenine has a flat excited-state PES, so it takes longer

for the excited wavepacket to decay to the ground state. TA measurements on

uracil and adenine derivatives [81–83] have shown ultrafast decay on a similar

time scale which were interpreted in terms of rapid (few hundred fs) relax-

ation to the ground electronic state, followed by vibrational cooling on > 1 ps

timescales.

In this thesis, we would like to provide a complimentary view of DNA

base excitation relaxation dynamics with 2D spectroscopy on DNA bases in

aqueous solutions.

4.4 2D spectroscopy on adenine and uracil in

aqueous solutions

4.4.1 Background subtraction

As mentioned in Section 2.4, there is strong linear and nonlinear UV absorp-

tion by the solvent and fused silica windows on the sample holder, which can

be several times larger than the DNA/RNA signal and mask the real DNA

dynamics near short pump-probe delays.

For delays less than 125 fs, there is a significant solvent (water) contribution
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to the 2D spectrum. To isolate the DNA response from background water

signal, we measure the DNA + water (SDNA+water) and water (Swater) 2D

spectrum separately at each delay, and subtract the water contribution from

SDNA+water. The water subtraction is complicated by the fact that the average

intensity of the pump pulse sequence in DNA solutions is less than the average

intensity of the pump pulse sequence in pure water due to absorption of the

pump pulses by the DNA. As a result, for a given input pump intensity, the

solvent sees less light in DNA solution than in pure water. To mimic the

lowered pump intensity seen by solvent, we made the measurements on water

alone at a reduced pump intensity where the ESA at zero time delay was

roughly the same for pure solvent and for DNA solution. This is, however,

still not adequate for accurately extracting the water contribution, because

the measured signal, SDNA+water, is a sum of Swater and SDNA contributions.

Therefore, in order to refine the water subtraction, we looked to features in

the spectrum outside the pump or probe bandwidth which are due to water

alone, and do not have a contribution from the DNA signal. We multiplied

Swater by a constant factor k before subtracting it from SDNA+water, with the

factor chosen to minimize the features outside the pump and probe spectra:

SDNA = SDNA+water − k × Swater (4.69)

Figure 4.6 demonstrates how we adjust k until the spectrum looks smooth and

vertical stripes outside of pump spectrum (37700 cm−1 ∼ 38300 cm−1) are

minimized at the optimal k value. Each panel of Figure 4.6 represents SDNA

calculated with a different k. When either too little (Figure 4.6(A), k = 0.4) or

too much (Figure 4.6(C), k = 1.1) Swater has been removed from SDNA+water,

vertical absorption (Figure 4.6(A): region above Frequency 1 = 38300 cm−1)

or emission (Figure 4.6(C): region above Frequency 1 = 38360 cm−1) stripes

emerge from the spectrum. Only when we account for the right amount of

water signal, Swater, (Figure 4.6(B), k = 0.7), does the DNA signal, SDNA,

look free of artifacts. This analysis is reinforced by Figure 4.7, which shows

horizontal lineouts of the data shown in Figure 4.6 at a frequency of 38400

cm−1 (outside of the pump spectral bandwidth) for a range of k values. This

plot shows that the unphysical absorption or emission feature is minimized for

k=0.7.

66



Frequency 3 [10 4 cm −1]

Fr
eq

ue
nc

y 
1 

[1
0

4  c
m

−1
]

 

 

3.76 3.78 3.8 3.82 3.84
3.76

3.78

3.8

3.82

3.84

Frequency 3 [10 4 cm −1]
Fr

eq
ue

nc
y 

1 
[1

0
4  c

m
−1

]

 

 

3.76 3.78 3.8 3.82 3.84
3.76

3.78

3.8

3.82

3.84

Frequency 3 [10 4 cm −1]

Fr
eq

ue
nc

y 
1 

[1
0

4  c
m

−1
]

 

 

3.76 3.78 3.8 3.82 3.84
3.76

3.78

3.8

3.82

3.84

−0.5

0

0.5

1

−0.5

0

0.5

1

−0.5

0

0.5

1
(A) (B) (C)

Figure 4.6: Adenine 2D spectrum at 60 fs subtracted with (A) k=0.4 (B)
k=0.7 (C) k=1.1 X water 2D spectrum.

3.78 3.8 3.82 3.84 3.86
−0.2

−0.1

0

0.1

0.2

Frequency 3 [104 X cm−1]

N
or

m
al

iz
ed

 2
D

 M
ag

ni
tu

de
 [a

.u
.]

 

 

k = 0
0.3
0.5
0.7
0.9
1.1
1.5

Figure 4.7: Horizontal lineouts of the data shown in Figure 4.6 at 38400 cm−1

for different k values.
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4.4.2 Center of gravity (COG) and variance

Figure 4.8 and Figure 4.9 show adenine and uracil 2D spectra S
(3)
PLPP individu-

ally, for pump-probe delays of 60, 125 (150 for uracil), 400 (500 for uracil) and

1000 fs. At delays below 100 fs, the spectrum shows evidence of both increased

transmission and absorption of the probe - ground state bleaching (GSB) and

excited-state-absorption (ESA) respectively. The ESA signal evolves rapidly

with delay and is overwhelmed by the GSB signal at around 125 fs. After

150 fs, the DNA 2D spectrum contains a single GSB peak, with its magnitude

rising until about 300 fs and then decaying gradually with the delay and only

subtle changes in the shape of the peak taking place. This general behavior is

common to several molecules that we have studied, including adenine, uracil,

cytosine and NADH. The decay of the GSB signal is consistent with earlier

TA measurements of adenine [83] which were interpreted in terms of relaxation

via conical intersections (CIs) followed by vibrational cooling in the electronic

ground state. A single peak in the spectrum is consistent with driving a single

(homogeneously/inhomogeneously broadened) transition. The spectrum be-

comes structureless on a relatively short time scale as a result of dephasing

and spectral diffusion caused by the solute-bath coupling [92]. As analysis of

the long time dynamics (for delays greater than 500 fs) does not yield infor-

mation beyond what is available with traditional pump probe measurements,

we concentrate on dynamics within the the first few hundred femtoseconds.

In order to gain more insight into the molecular dynamics after 150 fs, we

calculate the center-of-gravity (COG - the first moment of the distribution)

and variance along diagonal and anti-diagonal axes of the GSB peaks at each

delay. Previous 2D studies have interpreted oscillations in the ratio of diag-

onal to anti-diagonal FWHM of the 2D spectrum in terms of coherent wave

packet motion on the excited-state PES [93]. Figure 4.10 shows the values for

measurements and their averages over several sets of measurements made on

separate days with separate solutions. We note that the COG and variance

for adenine show little systematic variation with time delay, while the uracil

data shows significant changes in both the COG and variance of the peak with

time delay over the first few hundred femtoseconds.

In addition to the COG and variance, we show the integral of the 2D

spectrum as a function of pump probe delay in order to compare the magnitude
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Figure 4.8: Adenine 2D spectrum at pump-probe delay = (A) 60 fs (B) 125fs
(C) 400fs and (D) 1000 fs.
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Figure 4.9: Uracil 2D spectrum at pump-probe delay = (A) 60 fs (B) 150fs,
(C) 500fs and (D) 1000 fs.
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measurements.

71



of the ground state bleach signal with the COG as a function of time delay

over the first picoseconds. This is shown in Figure 4.11.
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Figure 4.11: Magnitude of the 2D signal as a function of pump probe delay
for adenine and uracil. The 2D spectrum was integrated over the region of
the peak and is shown for several different measurements (dots: adenine, and
triangles: uracil) as a function of delay along with the average (solid line:
adenine and dashed line: uracil) of different measurements (made on different
days).

4.4.3 UV-UV pump-probe measurements on adenine

and uracil vapor

We also compare our 2D results with other methods measuring relaxation dy-

namics of DNA bases. Figure 4.12 shows molecular ion yield of adenine and

uracil as a function of pump probe delay (data courtesy of Marija Kotur). The

molecular ionization signal was produced by focusing the same UV pump and

probe pulses into an effusive molecular beam in a time-of-flight mass spec-

trometer and measuring the parent ion yields as a function of pump probe

delay. Here the pump and probe beams have a much tighter focus and higher

intensities (more than two orders of magnitude) than those in the 2D mea-

surement to produce enough ion yields for the measurement. Details on the

uracil molecular beam source can be found in [94].
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Figure 4.12: Adenine (solid curve) and uracil (dashed curve) ion yields vs
pump probe delay. Adenine signal has a fast decay with lifetime ∼ 150 fs and
another much slower component. Uracil signal decays within 100 fs. Data
courtesy of Marija Kotur.

4.4.4 Discussion

Adenine and uracil 2D spectra show very similar features at first sight. Both

suggest the existence of ESA for early time delays and GSB at longer delays,

while only uracil exhibits systematic changes in COG and variance for the

2D spectra. We interpret the evolution of the ESA and GSB spectrum in

terms of wave packet motion on the excited-state potential. As illustrated

in Figure 4.13, at Franck Condon point, the minimum energies required for

vertical ionization are about 8.4 eV and 9.5 eV (±0.3 eV) for adenine and

uracil respectively [94–97]. This implies that both molecules can be ionized

from the excited-state near FC point by absorbing another UV photon (4.77

eV) from the probe pulse. However, as the wave packet moves away from the

FC point, the IP rises rapidly [94], and absorption from excited-states becomes

less favorable if it is driven by ionization (or absorption to Rydberg states).

As a result, ESA for adenine and uracil both decrease gradually with pump

probe delay. At delays < 100 fs, negative signals in adenine and uracil 2D

spectra dwindle down towards lower frequencies and are replaced by positive

signals before 110 fs. It might be surprising that ESA takes place at lower
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frequencies and GSB occurs at higher frequencies. From the perspective of

the wave packet moving down on Sππ∗ and the IP increasing, one might expect

that the ESA would occur at higher transition frequencies. However, the 2D

spectrum contains both GSB (S0 to the first bright state, Sππ∗) and ESA

(Sππ∗ to Sn or D0 - the ground (doublet) state of the ion) with their relative

magnitudes depending on the the instantaneous detuning and transition dipole

moments as the wave packet evolves on the excited-state. Initially, strong ESA

dominates the 2D spectrum, as it diminishes away because of growth in IP at

longer delays that no longer favors Sππ∗ to Sn transitions, positive GSB signals

start to prevail in the 2D spectrum.
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Figure 4.13: Neutral and ionic energies of (A) adenine and (B) uracil. Lower
panel: Energies for neutral states [58, 98]. Black: ground state, red: S1 state,
green: S2 state. Upper panel: Energies for the lowest-laying ionic state (D0).
For adenine, Sππ∗ is the S1 state, and for uracil, Sππ∗ is the S2 state. Dotted
lines are used to mark predicted connections between states. Note that the
theoretical S0 → Sππ∗ excitation energies are overestimated compared to the
experimental measurements. Calculations courtesy of Spiridoula Matsika.

Even though adenine and uracil 2D spectra are both dominated by the

GSB signal at delays longer than 150 fs, subtle changes in the two GSB peaks
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reveal different excited-state dynamics for adenine and uracil. The COG of

the uracil 2D peak along the diagonal axis (Figure 4.10(B)) shifts to lower fre-

quencies with delay, while that of adenine does not. We consider two separate

mechanisms for the evolution of the COG in uracil, both of which suggest the

same picture - the wave packet moves toward lower energy on the Sππ∗ poten-

tial energy surface as it leaves FC region. The first mechanism is competition

between ESA and GSB. The ESA decays quickly as the wavepacket on Sππ∗

can no longer be excited to ionic or high lying neutral states because of an in-

creasing Sππ∗ to Sn energy difference. The COG for the 2D lineshape naturally

descends to lower frequencies as a negative contribution of ESA declines with

delay. The peak in the 2D signal Figure 4.11 occurs at about the same time

(∼ 250 fs) as the COG stops evolving for uracil, which is consistent with this

interpretation. However, we note that the peak in the 2D signal in adenine

is unaccompanied by a change in the COG. This is not consistent with the

changes in the COG being driven by competition between ESA and GSB. The

second mechanism which may produce a change in the COG is a decrease in

the Sππ∗ → S0 transition energy with time delay. As the wavepacket moves

down the Sππ∗ surface, the COG for GSB naturally shifts to lower frequencies

because of the smaller energy difference of the Sππ∗ → S0 transition.

While the magnitudes of adenine and uracil 2D spectrum both peak at

∼ 250 fs, only the uracil COG (along the diagonal) decays noticeably with

delay over the range of delays for which we are able to calculate reliably. For

adenine, there is no substantial variation in the COG from 150 to 1000 fs. This

indicates that the Sππ∗ potential near the FC region is steeper for uracil than

for adenine, and that the minimum on the Sππ∗ surface is shallower for adenine

than it is for uracil. This is illustrated in Figure 4.14 and consistent with our

collaborators’ calculation and previous studies [56, 91, 99]. In calculation [94],

the IP change (difference between Sππ∗ and D0) for adenine between the FC

region and the 1Lb minimum is negligible (< 0.1 eV), but for uracil, the IP

increases by 1.5 eV from the S0 minimum to the S2 minimum.

Each DNA base has a number of structural isomers formed by permut-

ing hydrogen atoms among the set of heteroatoms. These isomers are called

tautomers. In the gas phase, ∼ 99% of the adenine is in the form of 9H-

adenine (Figure 4.15). In aqueous solutions, adenine exists mostly in the form
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of 7H-adenine and 9H-adenine. Here we assume the adenine 2D signal comes

mostly from 9H-adenine, since the fraction of the two tautomers, 7H-adenine

and 9H-adenine, in aqueous solution is ∼ 22% and ∼ 78% respectively, and

we observed a relatively fast decay in the ESA signal which agrees with the

9H-adenine signature which is much faster than the 7H-adenine excited-state

lifetime [81, 87].

Adenine

Sππ*

Uracil

S0 S0

262 nm 262 nm

(A) (B)

Sππ*

Figure 4.14: Cartoons illustrating the excited-state PES for (A) adenine and
(B) uracil near the FC region. Based on our measurements, we argue that
adenine has a flatter excited-state potential surface, Sππ∗ , than for uracil. In
adenine the energy difference between Sππ∗ and the ground state S0 remains
roughly constant as the wavepacket moves down the PES, whereas the excited-
state potential surface for uracil is much steeper.

Figure 4.15: Adenine tautomers

Pump-probe measurements on adenine and uracil in the gas phase also

support the above interpretation. Figure 4.12 shows the parent ion yields

for adenine and uracil as a function of pump probe delay. The uracil signal
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decays away by 200 fs while the adenine signal lasts much longer. The results

are consistent with the interpretation that for uracil, the wavepacket moves

on a steeper excited-state PES, and the ion yield decays rapidly when the

IP increase beyond the probe photon energy as the wavepacket leaves the

FC region. For adenine, the ion signal last longer because of a much flatter

excited-state PES.

UV resonance Raman vibrational scattering spectroscopy measurements

on uracil and 9-methyladenine (9-MeA) solutions [100–102] yield a similar pic-

ture of the excited state dynamics - i.e. that the excited state PES is flatter

for adenine than for uracil. Previous work [103–106] has related the measured

Raman intensities to displacements on the excited state surface by modeling

the excited state potential in terms of a superposition of several displaced

multi-dimensional harmonic potentials. While this is generally not true for a

reactive system, for short-time dynamics, one can compare the resonance Ra-

man measurements with our measurements by looking at the displacements

quoted in the resonance Raman literature [100–102]. The intensity of a reso-

nance Raman vibrational band coupled to the electronic excitation is directly

proportional to the initial slope of the exited state PES along that vibrational

coordinate [103–106]. The larger the excited-state PES slope along certain nu-

clear coordinate, the more intense the corresponding resonance Raman vibra-

tional peak. The initial displacements depend mainly on the multidimensional

slopes of the excited-state PES near the FC region, which are well determined

by the Raman intensities [104]. For 9-MeA, 12 observed bands from 535 cm−1

to 1680 cm−1 after excitation at 266 nm have normalized displacement from

0.07 to 0.35 [101]. For uracil, the displacements for the 6 observerd modes

from 579 cm−1 to 1664 cm−1 are at least twice as large, ranging from 0.3 to

0.74. These results indicate that the initial slope of the excited-state PES for

uracil is larger than that of 9-MeA along all of the normal mode coordinates.

The pump-probe measurement in the gas phase, the 2D spectroscopy mea-

surements, and the resonance Raman spectroscopy results together provide a

consistent picture of the slopes of the excited-state PESs of adenine and uracil

near the FC region (Figure 4.14).

The persistence of the GSB signal for over 1 ps is consistent with uv-pump

uv-probe TA measurements of Kohler [81–83], which have been interpreted in
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terms of electronic relaxation followed by vibrational cooling on the ground

electronic state. In looking at the variance in the GSB signal as a function

of time for adenine and uracil, we note that the variance along the diagonal

changes substantially for uracil although it does not change substantially with

time delay for adenine. This could be due to different solvent interactions for

the two molecules [107, 108]. One possible contribution to this difference is

the presence of the dark nπ∗ states, which have different locations relative to

the bright states in adenine and uracil and are more sensitive to the solvent

than the bright ππ∗ states [84]. However, we note that this also could be due

to the interplay between ESA and GSB in uracil, which might lead to changes

in the variance. The fact that the diagonal variance and COG vary on similar

timescales for uracil is consistent with this second explanation.
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Chapter 5

Conclusion and Perspectives

In this thesis we explored coherent control spectroscopy in the weak field.

In Chapter 3, we demonstrated that pulse shaping in conjunction with two-

photon absorption can be used to distinguish between unbound and enzyme-

bound NADH in solution. The control exploits different responses between

the two forms to spectral phase (π phase flip) shaping. The response to the

parameter scan is sensitive to the NADH-enzyme binding ratio which is a

function of multiple parameters, e.g. NADH and enzyme concentrations and

temperature. The results are promising for discrimination-based microscopy.

In Chapter 4, we developed the two-dimensional (2D) Fourier transform

spectroscopy in the deep UV (262 nm) to study DNA excited state relaxation

dynamics. We interpreted the 2D spectrum of single adenine and uracil bases

in aqueous solution in terms of wavepacket motion on the excited state PES.

Both the adenine and the uracil spectrum show excited-state absorption at

short delays, and ground-state bleach beyond > 1 ps. At the Franck Condon

point, the minimum energies required for vertical ionization are 8.4 eV and

9.5 eV (±0.3 eV) for adenine and uracil respectively. Both molecules can be

ionized from the excited state near the FC point by absorbing another probe

photon. As the wavepacket moves away from the FC point, ionization becomes

less favorable and the the magnitude of ESA decreases. We also observed

that only uracil COG (along the diagonal) decays noticeably with delay, but

there is no substantial variation in adenine COG from delay 150 fs to 1 ps.

There are two possible mechanisms for the change in the COG: the first is

competition between ESA and GSB, and the second is a decrease in the Sππ∗
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→ S0 transition energy as the wavepacket moves down the excited-state PES.

The first mechanism is more unlikely, because if the COG decreases to lower

frequencies simply due less negative contribution from the ESA, there should

be a comparable amount of change in both adenine and uracil. The second

interpretation is that uracil has steeper excited state PES near the FC region,

so the COG of its lineshape decays noticeably with delay, while the adenine

has a flatter excited state PES, so the COG does not change substantially. Our

results are consistent with gas-phase measurements and ab initio calculations.

While measurements have shown that single bases eliminate excess elec-

tronic energy non-radiatively on a subpicosecond time scale, the detailed re-

laxation dynamics of base pairs and DNA strands are not yet clear. Crespo-

Hernandez et al. [109] suggest that vertical base stacking, not base pairing,

determines the relaxation dynamics in single and double-stranded oligonu-

cleotides comprised of adenine and thymine bases based on transient absorp-

tion measurements. Because 2D spectroscopy can identify coupled chromo-

spheres, it would be especially powerful to study macro-molecules like DNA

with 2D spectroscopy and provide a more comprehensive picture to energy

transfer in DNA. Naturally, the next step for 2D spectroscopy could be to

look at DNA base pairs and polymers dynamics.

Another future project is to extend to 2D two-color UV-blue spectroscopy.

As shown in Figure 4.5, the absorption bandwidth of DNA bases is 30 ∼ 40 nm,

much larger the bandwidth of currently available ultrafast UV lasers. Because

of dispersion issues, generally, the bandwidth of a UV laser is less than 10

nm. It is hardly likely to cover multiple electronic transitions with a single

UV laser. But it is possible to initiate the transition from the ground (S0) to

the second bright state (S2) with the third harmonic from a Ti:sapphire laser,

and probe the transition between the ground (S0) and the first excited state

(S1) with its second harmonic in the blue regime. This spectroscopy directly

measures if there is coupling between S1 and S2 via S0.

One final note to the future 2D spectroscopy is to construct a pulse-shaper

based spectroscopy in the boxcar geometry. In the pump-probe geometry,

the third beam serves as the third excitation and the local oscillator, and its

noise becomes the largest source of error in our measurement. Stone et al.

[29] have demonstrated 2D spectroscopy in the boxcar geometry with a 2D
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spatial-light-modulator (SLM) pulse shaper. It is also possible to convert our

current pulse-shaper to make the two pump pulses propagate along different

k vectors without a 2D SLM. In the boxcar geometry, the induced signal will

propagate towards the fourth corner of a diamond, which is free of background.

This improvement could greatly enhance the S/N of the apparatus and help

to resolve finer structures in the spectrum.
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Appendix A

Appendix: NADH Solution

Preparation

The NADH solution and the NADH+MDH mixture were prepared in the fol-

lowing procedure: powdered NADH (Acros, CAS 606-68-8) was first mixed

into Trizma (Sigma Aldrich, hydrochloride buffer solution, pH 7.0, 1 M) so-

lution to reach the desired molar concentration. Different amount of mMDH

(Roche, pH ∼ 6) in 3.2 M ammonium sulfate solution was then mixed into the

free NADH solution to reach the stated molar concentrations. The binding

fraction of the enzyme and NADH mixture is determined by the equilibrium

formula Kd = [N ]×[M ]
[A]

, where [N], [M] and [A] are the equilibrium molar con-

centrations of NADH, mMDH and mMDH-bound NADH respectively, and

Kd = 4.7 µM [110] is the dissociation constant. Different solutions are then

put into a 10 mm path length glass fluorometer cuvette (NSG precision cells)

separately and illuminated by π phase step pulses.
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Appendix B

Appendix: Inhomogeneous

Line-broadening

In Section 4.2.1, we define the spectral inhomogeneous lineshape broadening

as χ(ω). In this appendix, we will explain why the inhomogeneous broadening

can be represented as χ(t3 − t1) in the rephasing process, and for the non-

rephasing process, it is in the form of χ(t3 + t1).

Most molecules scientists interested in are, unavoidably, immersed in a

solid, liquid, or dense gas and interacts with many degrees of freedom of

the so-called bath. Theories on spectral line-broadening traditionally describe

broadening in two extreme cases. The inhomogeneous broadening arises from

molecules absorbing at different frequencies because of different local environ-

ments. As a result, different molecules exhibit different transition lineshapes.

The broadening is static and carries no dynamic information. Inhomogeneous

broadening is described by convoluting the response function with a distri-

bution of transition frequencies. In contrast, the homogeneous broadening

reflects an interaction with the bath on a fast timescale, and the transition

lineshapes of all molecules are broadened equally.
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B.1 Time evolution operator of a time depen-

dent Hamiltonian

In Chapter 2.2, the time evolution operator with respect to the Hamiltonian H0

is defined as U0(t, t0 = 0) = e−iH0t/~, which is true only for time-independent

H0. To generalize the definition of the time-evolution operator to the case of

a time-dependent Hamiltonian, we plug in |ψ, t0; t〉S = U0(t, t0)|ψ, t0〉S to the

time-dependent Schrödinger equation:

∂

∂t
U0(t, t0)|ψ, t0〉S = −−i

~
H0(t)U0(t, t0)|ψ, t0〉S

∂

∂t
U0(t, t0) =

−i
~
H0(t)U0(t, t0) (B.1)

Integrating both side of Eq. B.1, we get the integral form of U0(t, t0)

U0(t, t0) = 1− i

~

∫ t

t0

dτH(τ)U0(τ, t0)

(B.2)

Applying time-perturbation theory to Eq. B.2, we obtain the expansion in the

form of a time-ordered integral

U0(t, t0) = 1 +
∞∑
n=1

(
−i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

H0(τn)H0(τn−1) . . . H0(τ1) (B.3)

where τ1 ≤ τ2 ≤ · · · ≤ τn. To facilitate the discussion, we define a positive

time ordered exponential and denote it as follows

exp+

[
−i
~

∫ t

t0

dτH0(τ)

]
≡ 1 +

∞∑
n=1

(
−i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

= H0(τn)H0(τn−1) . . . H0(τ1)U0(t, t0) (B.4)
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Similarly, the adjunct of the time evolution operator can be written as the

negative time ordered exponential:

exp−

[
i

~

∫ t

t0

dτH0(τ)

]
≡ 1 +

∞∑
n=1

(
i

~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

= H0(τ1)H0(τ2) . . . H0(τn)U †0(t, t0) (B.5)

The time evolution operator will be used in the following section where we

incorporate solvent effects to the electronic transitions.

B.2 Fluctuating transition frequencies for a

two electronic level system

For a two-level system with a ground state |g〉 and an electronically exited

state |e〉, which are coupled to nuclear degrees of freedom q. In the Born

Oppenheimer approximation, the adiabatic Hamiltonian is given by

H = |g〉Hg(q)〈g|+ |e〉He(q)〈e| (B.6)

where

Hg(q) = T (q) +Wg(q)

He(q) = ~ω0
eg + T (q) +We(q) (B.7)

T (q) is the nuclear kinetic energy and We(q) and Wg(q) are the adiabatic

potential for the excited and ground states respectively. ~ω0
eg is the energy

gap between the minima of the two states. Now we introduce the energy gap

operator Ω = He − Hg − ~ωeg, where ~ωeg refers to the average energy gap.

We first look into the linear absorption, from Eq. 4.34, the first term in the
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equation is:

J(t1) ≡ 〈µI(t1)µI(0)ρ(−∞)〉

= 〈µge(t1)µeg(0)ρ(−∞)〉

=
〈
e−

i
~Hgt1µgee

− i
~Het1µegρ(−∞)

〉
=

〈
e−

i
~Hgt1µgee

− i
~ (Hg+Ω+~ωeg)t1µegρ(−∞)

〉
= e−iωegt1µ2

〈
exp+

(
−i
∫ t1

0

dτΩ(τ)

)
ρ(−∞)

〉
(B.8)

where Ω(τ) is the electronic energy gap operator in the interaction picture

with respect to the ground state:

Ω(τ) ≡ e
i
~HgτΩe

−i
~ Hgτ (B.9)

Eq. B.8 can be generalized to third-order response. The Liouville pathway

R1 in Eq. 4.39 can be rewritten as

R1 = 〈µge(t3 + t2 + t1)µeg(0)ρ(−∞)µge(t1)µeg(t2 + t1)〉

= 〈µge(t1)µeg(t1 + t2)µge(t1 + t2 + t3)µeg(0)ρ(−∞)〉

= 〈exp

[
i

~
Hgt1

]
µgeexp

[
−i
~
Het1

]
exp

[
i

~
He(t1 + t2)

]
µegexp

[
−i
~
Hg(t1 + t2)

]
× exp

[
i

~
Hg(t1 + t2 + t3)

]
µgeexp

[
−i
~
He(t1 + t2 + t3)

]
µegρ(−∞)〉

= exp(−iωegt1 − iωegt3)

× 〈µ2
geµ

2
egexp+

[
−i
∫ t1

0

dτΩ(τ)

]
exp−

[
i

∫ t1+t2

0

dτΩ(τ)

]
× exp+

[
−i
∫ t1+t2+t3

0

dτΩ(τ)

]
ρ(−∞)〉

(B.10)

where we utilize results from Eqs. B.8 and B.9 in the last step of the derivation.
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Similarly, the other Liouville pathways can be expressed as:

R2 = exp(iωegt1 − iωegt3)

× 〈µ2
geµ

2
egexp−

[
i

∫ t1+t2

0

dτΩ(τ)

]
exp+

[
−i
∫ t1+t2+t3

0

dτΩ(τ)

]
× exp+

[
−i
∫ t1

0

dτΩ(τ)

]
ρ(−∞)〉 (B.11)

R3 = exp(iωegt1 − iωegt3)

× 〈µ2
geµ

2
egexp−

[
i

∫ t1

0

dτΩ(τ)

]
exp+

[
−i
∫ t1+t2+t3

0

dτΩ(τ)

]
× exp−

[
i

∫ t1+t2

0

dτΩ(τ)

]
ρ(−∞)〉

(B.12)

R4 = exp(−iωegt1 − iωegt3)

× 〈µ2
geµ

2
egexp+

[
−i
∫ t1+t2+t3

0

dτΩ(τ)

]
exp−

[
i

∫ t1+t2

0

dτΩ(τ)

]
× exp+

[
−i
∫ t1

0

dτΩ(τ)

]
ρ(−∞)〉

(B.13)

By performing an ensemble average of Eqs. B.10-B.13 over the distribution of

Ω, the response functions become

Rα(t3, t2, t1) = RH
α (t3, t2, t1)χ(t3 ± t1) (B.14)

Where RH
α is the homogeneous part of the response function. The χ(t3 ±

t1) function is the inhomogeneous broadening that comes from the ensemble

average of the exp[−iωeg(t3 ± t1)] factor. For rephasing pathways R2 and R3,

χ = χ(t3 − t1), and for non-rephasing pathways R1 and R4, χ = χ(t3 + t1)
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