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ABSTRACT

A fast, accurate, and simple centroiding algorithm was developed for data anal-

ysis of charged particles detected in a velocity map imaging apparatus and was

implemented in both LabVIEW and Matlab. The new algorithm was on average

an order of magnitude faster than the previous algorithm used by the group, al-

lowing the average analysis time per frame to be reduced to approximately 1.3 ms

in Matlab and 0.5 ms in LabVIEW.

This increase in speed allows for real-time data analysis in LabVIEW and quasi-

real-time analysis in Matlab. The fidelity of the new algorithm was found to be

comparable to that of the old algorithm. An exploration of the effect of a number

of factors on the fidelity and speed of the algorithm was conducted.

The algorithm was tested on data sets taken with two different cameras. One

of the cameras gave intensity information for each pixel, while the other camera

gave timing information for each pixel. The pixel timing capability is a new and

exciting development in the field of ultrafast physics because it allows for unam-

biguous identification of the fragment source of each hit in the data. This allows

for simultaneous imaging of both electrons and ions with a single camera.
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Spencer Horton, Vincent Tagliamonti, Yusong Liu, and Gayle Geschwind) and the

other AMO groups to thank for the good company and good memories. I have

really enjoyed my time at Stony Brook and am grateful to have known so many

amazing physicists, and people.

Lastly, this thesis wouldn’t have been possible without the help of Péter Sándor
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Chapter 1: Introduction

Ultrafast physics is the science of measuring processes with picosecond to attosec-

ond resolution. Pico- is 10−12, while femto- is 10−15, and atto- is 10−18. To get a

sense of this scale, if you take a second to be the distance light travels in that time,

a second would correlate to approximately three-quarters of the distance from the

Earth to the Moon [1]. On the same scale, a picosecond (ps) would only be the

thickness of a business card [1]. A 10 femtosecond (fs) pulse would be smaller yet,

at slightly less than the diameter of a hair and the shortest pulse ever created (67

attoseconds (as)) would be between the size of a virus and DNA [1, 2, 3].

Measuring events at these timescales is very useful because in order to resolve

motion, or dynamics, you need a measurement tool with time resolution shorter

than the timescale of the motion and many atomic and molecular dynamics occur

in the ultrafast regime. For example, molecular rotations occur within picosecond

timescales; molecular vibrations happen in the femtosecond regime; and at the

attosecond regime, electron wavepacket dynamics can be explored [Fig. 1.1].

While the concept that an event must be measured by something smaller than

itself to be accurate might seem abstract. It is easy to understand if you imagine

trying to measure the size of a penny with a measuring tape that only has marks

every foot. It’d be pretty difficult to get an accurate measurement for the penny.

While the example given deals with measuring length, the same is true when
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Figure 1.1: Timescales at which dynamics appear.

measuring events in time. This phenomenon can be observed when taking a picture

of a squirming child or someone running. The picture comes out blurred because

the event being photographed is faster than the camera’s shutter, so the image’s

resolution is poor.

In our lab, we focus on studying molecular dynamics, such as ionization, and

the objects we are imaging are charged particles. A detailed description of the

experimental set-up can be found in Chapter 2. The basic premise however is that

fragments produced by the ionization of a molecule hit a screen causing the screen

to fluoresce, or light up. We then take images of this screen using a camera. An

example data image is shown in Fig. 1.2.

In Fig. 1.2, the bright spots in the image represent where a charged particle

hit the phosphor screen. In order to analyze the molecular dynamics, a large

number of hits must be analyzed. This translates into a single data set containing

information from thousands of images.

To explore the dynamics, we must identify where hits fell. The näıve way
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Figure 1.2: Raw data from ultrafast measurement.

of accomplishing this would be to add all the images together and analyze the

composite image. Doing so though, does not allow for coincidence measurements

and also has problems associated with stray light and camera dark noise. To

eliminate the effect of noise and detector efficiency on the data, the centroid of

each hit was identified and an image of all the data was compiled by placing a

Gaussian at the centroid locations.

Finding the centroid of an object in an image is a fairly common problem in

science and there is an abundance of centroiding codes and information on the

centroiding problem available [4, 5, 6]. Many of these codes though either run

very slowly or are very complicated in nature and rely on large function library

databases. In this thesis, we discuss the development of an algorithm which works

fast enough for our purposes, while still providing us the precision required.

Chapter 2 contains a brief discussion of the experimental set-up and the two

cameras used to collect data. One camera measures light intensity, while the second
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gives timing information for every pixel. In chapter 3, a detailed explanation of

the algorithm is given. A quantitative analysis of the speed and fidelity of the

algorithm is conducted in chapter 4. Lastly, in chapter 5, the results and the

significance of the results are discussed.
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Chapter 2: Data Acquisition

2.1 Experimental Set-Up

Our experimental set-up consisted of two main components: the laser system and

the vacuum chamber.

The laser system used was an amplified Ti:Sapphire system. The system pro-

duces 780 nm laser pulses with 1 mJ pulse energy and a minimum duration of 30

fs at a 1kHz repetition rate [10]. Using filament based spectral broadening, pulse

duration can be reduced to sub-10 fs with our current minimum pulse duration

being 9 fs.

The Vacuum chamber portion of our set-up consists of a traditional time-of-

flight (TOF) tube and a velocity map imaging (VMI) apparatus. A molecular

beam is sent into the vacuum chamber where the laser beam will pass through

the molecular beam, ionizing the molecules. The charged particles created in

this process will then be accelerated towards a stack of microchannel plates by

exposing them to an electric potential. The time-of-flight tube acts to separate

out the times at which the molecules arrive at the MCPs, while the velocity map

imaging apparatus acts to make the cause particles of different kinetic energies to

arrive at different radii on the MCPs.

The MCPs are a dual-stack chevron MCPs. When the accelerated charged
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particles hit the MCP, they produce a shower of electrons. As the electrons travel

through the MCP, they will hit the walls many times creating many more showers.

By the end of the MCPs, a shower of ∼ 106 electrons has been created. The

electrons are then incident on a phosphor screen which fluoresces and an image

of the screen is taken using a camera. A discussion of the two cameras used to

collect the data is contained in the next section. A more detailed description of

the experimental set-up is given in Ref. [7] and Ref. [8].

Figure 2.1: Experimental set-up. [9]
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2.2 Cameras

The algorithm was tested on data taken from a Basler acA2000-340km and a

TimePix camera. The specifications of and differences between the two are dis-

cussed below.

2.2.1 Basler

The Basler camera measures light intensity and outputs monochromatic images

that are 2048 x 1088 pixels in size [11]. For the purposes of our data acquisition,

the camera was used in a mode where only a 360 x 360 pixel portion of the frame

was analyzed. This mode was used because it allowed for a 1kHz transfer rate

from the camera to the computer. This allows us to transfer the data in real-time.

Using the Basler camera, only ions or electrons can be imaged at one time, not

both. This is because the camera only provides intensity information making it

impossible to distinguish electrons from ions. In order to image both electrons and

ions for coincidence measurements, a fast high voltage switch is used. Initially, a

positive electric potential is applied to the ionization fragments causing the pro-

duced electrons to accelerate towards the detector. Once the electrons have been

detected, a negative potential is applied causing the produced ion to accelerate

towards the detector, where its fragment type is identified by its time of flight.
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2.2.2 TimePix

The TimePix camera measures timing information for each pixel with 10 ns res-

olution [12]. The camera output data in the form of a text file, which contained

three columns with information on every above-threshold value pixel. The first

column contained the x-position of the pixel, the second, the y-position, and the

third, the timing information.

In this data set, the intensity information is replaced by the timing informa-

tion. The timing information is given in reverse number form meaning the largest

number corresponds to the light arriving at the camera the fastest and the smallest

number corresponds to light arriving at the camera at the latest time. The time

stamp can be converted to seconds using a conversion factor.

The usage of the TimePix camera is significant in the field of ultrafast physics

as it represents one of the first times a camera with nanosecond timing capabilities

is being used in ultrafast. This capability allows us to unambiguously identify

hits with the type of fragment they came from. This is useful for coincidence

measurements.



9

Chapter 3: Centroiding Algorithm

In this chapter, a basic outline of the centroiding algorithm is discussed. The full

Matlab and LabVIEW code can be found in Appendix A and B respectively.

The input of this code is a grayscale image for the Basler data and a list of

x- and y-coordinates plus a time stamp for each pixel light was incident on for

the TimePix data. The output of the Basler data analysis is a list of x- and y-

coordinates for the centroid of each hit and for the TimePix camera, it is a list of

centroid coordinates and maximum and average timing for each hit.

Figure 3.1: Pseudocode of algorithm.
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3.1 Threshold Image

The first step of the algorithm, after reading in the raw data, for the Basler data is

to threshold the image. This step is skipped for the TimePix data. Thresholding

acts to remove low-intensity noise. To threshold an image means to set all values

above a certain number, or threshold, equal to one and to set all values below the

number equal to zero as shown in Fig. 3.2.

Since a majority of the background noise is low intensity relative to the signal,

thresholding the image removes a lot of the background noise from an image. This

effect is visible in Fig. 3.3.

Figure 3.2: Graphic of process of thresholding.

Figure 3.3: Effect of thresholding.
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Looking at the raw data, we see that the background of the image is very

noisy and the illumination of the background seems to be fairly uniform. After the

thresholding though, the background illumination has been eliminated and there

are only real hits and very small patches of background noise, all of which are of

higher intensity.

3.2 Prefilter Image

After thresholding, there still exists high-intensity noise. The high-intensity noise

tends to be small in size, generally only occupying a single pixel. To remove this

high-intensity single pixel noise a prefilter is used. The prefilter acts to remove

pixels which have no neighbors that are also greater than the threshold. This step

removes single pixel high intensity noise.

Neighbors can either be defined as a 4- or 8-connected neighborhood as shown

in Fig.3.4. In our data analysis, the 4-connected neighborhood was used.

Figure 3.4: A 4-connected and 8-connected neighborhood.

Prefiltering was accomplished by multiplying the thresholded image by shifted

copies of itself. A copy of the image in which every pixel was shifted to the left by

a single pixel and a copy of the image where every pixel was shifted up by one pixel
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was created. These shifted images were then added to the original image to form

a composite image. For a pixel to have a value greater than one in the composite

image means that one of its neighbors must also be above one. The composite

image was then multiplied by the original image.

In Fig. 3.5, the three images on the left represent the original, shifted upwards,

and shifted left image. The image on the right represents the composite image,

formed by adding the three images on the left and then multiplying by the original

image. The white pixels represent pixels that would have a value of one and

the yellow pixels denote pixels that would have a value greater than one. The

composite image was then thresholded, so only values above one were retained.

This step removed single-pixel high-intensity noise by removing pixels that did not

have above-threshold neighbors either upwards or to the left.

Figure 3.5: Illustration of prefiltering process.

Fig. 3.6 illustrates what a data set would look like before and after prefiltering.

It’s clear that after prefiltering the image, single pixel noise has been reduced,

while retaining the hits that we would like to analyze.
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Figure 3.6: Data before and after prefiltering.

3.3 Identifying Hits

At this point, most of the noise has been removed. However, no analysis has been

done involving hits in the image. In order to identify the centroid of the hits, the

objects in the image must first be identified. Both the Matlab and LabVIEW code

make use of built in functions for this step. In Matlab, the function bwconncomp

is used; in LabVIEW, the function Count Objects 2 is used.

The Matlab function makes use of a flood-fill algorithm. Flood-fill algorithms

are used in Minesweeper and for the bucket tool in many Paint programs [13].

In a flood-fill algorithm, the input image has two colors, a target color and

another color. In our case, the target ’color’ will be one, while the other color

will be zero. The algorithm starts at an initial pixel with the target color. The

code then replaces the target color with a new color, say the value 2. Once this is

accomplished, the pixel’s neighbors will be checked until another target color pixel

is found. If a target color pixel is found, the pixel color will be replaced with the
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new color. The pixel will then be taken as the new starting point and the process

will continue from there. If no target color pixel is found the the object will be

considered complete. The rest of the image will then be scanned until another

target color pixel is found.

Figure 3.7: Flood-fill algorithm.

When another target color pixel is found that is not the neighbor of one of

the pixels in the earlier object, this pixel will be considered a new object and the

replacement value assigned to this pixel will be different than the value assigned

to the first object. For example, since the first object was assigned 2 as the

replacement value, the second object will have a replacement value of 3.

At this step in the process, any objects that are below a specified size are also

’thrown away’. These small objects generally represent noise, rather than a hit.

The results of this step are shown in Fig. 3.8.

3.4 Locate Centroid

Next, the algorithm finds the centroid of the object. In order to find the centroid of

the object, a center of mass calculation is used. In LabVIEW, the built-in function
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Figure 3.8: Results of object detection.

Count Objects 2 is used.

To find the center of mass, a weighted average is taken of each of the pixels

within the object. The weighted average is found by multiplying the location of the

pixel by its intensity and then dividing by the number of pixels in that dimension

for the object. The general formula for the weighted average is given in Eq. 3.1,

where x is the position of the pixel and w is the pixel value.

x̄ =

∑i
n=1 xiwi∑i
n=1wi

(3.1)

The results of this step, a list of x- and y-central coordinates for each hit, will

be output by the code. Fig. 3.9 demonstrates the product of this step. All further

data analysis is done using these coordinates, a noise free and memory-compact

representation of the data.
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Figure 3.9: Raw data and results of centroiding.

3.5 Timing Information

With the TimePix camera, each pixel measures time, rather than intensity. There-

fore the analysis process for the TimePix camera is slightly different. The initial

thresholding for the TimePix camera is done by the camera itself and is not in-

cluded in the data analysis. The camera will only register a hit if it is above a

certain threshold, or brightness. If this threshold is not surpassed, the camera will

not record the hit.

For each image, the average and maximum time value for each hit is also

calculated. This data can be used to identify which fragment the hit came from

and characterize the time resolution of the camera.
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Chapter 4: Results

The goal of this project was to create a fast and accurate centroiding algorithm

for real-time data analysis. The laser used had a repetition rate of 1kHz repetition

rate, meaning 1,000 frames of new data were created every second. In order to

analyze this data in real-time, or on the fly, the analysis code must also run at a

1kHz repetition rate, or analyze a single data frame in 1 ms.

This analysis should be as accurate as possible at identifying hits and their

centroids, so that the data is not skewed during the analysis. A study of the speed

and fidelity, accuracy, of the code were conducted and are discussed in the following

sections.

4.1 Speed

The goal of this project was to analyze the images at the same speed at which

they were collected, so the data could be analyzed in real-time. This goal was

achieved with the LabVIEW code, came close to being achieved with the Matlab

code which analyzes Basler data, and is still a factor of three off for the Matlab

TmePix data analysis. A table of the speeds of each of the algorithms is shown in

Table 4.1.

The timing for the algorithms in Matlab was found using the built-in tic and
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Additional
Old (ms) New (ms) Analysis (ms)

Basler Matlab 5.8 1.3 ——–
Basler LabVIEW 11.2 0.5 ——–
TimePix Matlab ——– 3.0 0.3 ms

Table 4.1: Average image analysis time.

toc functions, while in LabVIEW, the image analysis timing was found using the

VI Profiler. The VI Profiler was used in LabVIEW, rather than the more common

Tick Count, because it has µs resolution, whereas Tick Count only has ms time

resolution. The times reported included only the time it took to analyze the image,

go through all the steps described in Chapter 3, and did not include the time it

took to read in the image or write out the list of centroids. For the TimePix data,

the time it took to find the maximum time value for each hit was recorded as

additional analysis time. The Basler images were 360 x 360 pixels in size, while

the TimePix data corresponded to images 256 x 256 pixels in size.

It can be seen from Table 4.1, the new Matlab Basler algorithm is roughly five

times faster than the old algorithm and the new LabVIEW Basler algorithm is

approximately 20 times faster. This is a sizable improvement.

The Basler Matlab code can analyze approximately 770 frames per second.

This is less than the 1000 frames produced per second, but is fast enough for

certain applications where images can be presorted prior to analysis based on

complementary information allowing us to only analyze a fraction of the 1000

frames per second.

The TimePix analysis takes about a factor of three longer than the 1 ms we
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were aiming for. Most of the additional analysis time was added during the object

identification portion of the code. The timing for this section could potentially

be further reduced by reducing the range of time values which are analyzed. This

would remove a good number of noise pixels.

The effect of the number of hits on image analysis time was explored quantita-

tively using 2040 x 1088 images taken with the Basler camera and analyzed using

Matlab. The results are shown in Fig. 4.1. Looking at Fig. 4.1, it seems that there

may be a correlation between number of hits and analysis time, but it is not very

strong. This suggests analysis time has a stronger dependence on the conditions

under which the image was taken than the number of hits. Characterizing analysis

time per image as a function of number of hits is important because it informs our

choice of molecular density within the molecular beam.

Figure 4.1: Analysis time versus number of hits.
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A histogram of the analysis times is shown in Fig. 4.2. The analysis times

are generally clustered around some average. It is interesting to note though that

the two outliers correspond to the analysis time for the first and second image.

On average, the analysis time for the first image was found to be about an order

of magnitude larger. This may be due to the fact that Matlab compiles after

the program is run. This effect was not observed in LabVIEW, a pre-compiled

language, which further supports this hypothesis. This result suggests that it

may be wise to feed the Matlab algorithm two noise-free dummy images before

analyzing the real data to reduce image analysis times.

Figure 4.2: Histogram of analysis times.
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4.2 Fidelity

Developing an algorithm with high fidelity was essential. It doesn’t do much good

to write a fast centroiding algorithm, if it is incapable of accurately identifying the

centroids of objects in the image. In this section, the fidelity of the algorithm is

discussed and characterized.

In order to characterize the fidelity of the algorithm, the number of hits found

in an image with the algorithm was compared to the number found manually. Out

of 20 Basler images, the Matlab and LabVIEW code both correctly identified the

number of hits in 19 of the images. The image with the misidentified hits was

different for the two codes suggesting the algorithm used by the built-in object

identification functions is different in the two languages.

It was also found that the fidelity of the code was dependent on both the

initial threshold value and minimum object size chosen. For both, the fidelity of

the code dropped more dramatically if s value below the maximum fidelity value

was used than if a value above the maximum fidelity value was chosen. Changing

the threshold by as little as 2 from the maximum fidelity threshold was found to

change the number of hits identified by 5% if the value was 2 above and 24% if

the value was 2 below. The number of hits identified was found to change by 7%

if the minimum object size was increased by 1 and 30% if it was lowered by one.

This result underscores the importance of choosing an appropriate threshold and

minimum object size.
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Chapter 5: Conclusion

In this thesis, a fast, accurate, and simple centroiding code for use in data analysis

of ultrafast pulsed laser measurements is described. The algorithm was imple-

mented in both Matlab and LabVIEW and was found to be about an order of

magnitude faster than the previously used algorithm allowing for real-time data

analysis in LabVIEW and quasi-real time data analysis in Matlab.

Overall, the project has been a successful in creating a fast and simple centroid-

ing algorithm. The 1 kHZ analysis rate was reached with the LabVIEW code and

is not far off for the Basler Matlab code. Plans are also being made to implement

the code in the lab and integrate the algorithm with our data acquisition code.

Future work will focus on further improving the speed of the Matlab Basler

and TimePix code. Efforts are currently being directed towards writing a code,

which can make use of parallel computing, or in simple terms can analyze more

than one image at a time.
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Appendix A: Matlab Basler Code
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Appendix B: Matlab TimePix Code
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Appendix C: LabVIEW Basler Code
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Figure C.1: Front panel.

Figure C.2: Block diagram.




