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This thesis investigates different routes to gaining physical insight from closed

loop learning control experiments. We focus on the role of the basis in which

pulse shapes are encoded and the algorithmic search is performed. We present

simulations and experiments in selective molecular fragmentation using shaped

ultrafast laser pulses. We demonstrate reduction of the dimensionality of the

search space to one or two degrees of freedom. We show how the search space

can then be mapped out in detail along the most important degree of freedom,

leading toward a better understanding of the control mechanism.
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Chapter 1

Introduction

The development of ultrafast lasers opened up a vast field of new applications

and new physical research. Ultrashort pulse durations of less than 100 as

have been reported[1]. These short timescales render possible the observation

and manipulation of ultrafast dynamics in surface physics, biological physics,

atomic physics, molecular physics and many more fields of physics and beyond

physics. Advances in amplifier technology for ultrashort pulses made very high

peak powers of over 1 TW available[2]. Such high power pulses can be used to

study the interactions of matter with strong fields. Electric field strengths E

much larger than the atomic unit of field are accessible; i.e., E > e/(4πε0rBohr).

The progress in laser technology has been accompanied by the development

of techniques for pulse shaping, allowing for control over the characteristic

variables of the electric field: phase, amplitude, and polarization. By changing
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these actively it is possible to access a large range of pulse shapes only limited

by the bandwidth of the laser.

One goal of quantum chemistry is to control molecular dynamics. Shaped

amplified laser pulses can be used to approach this goal. Modern ultrafast

lasers provide timescales and field strengths that are natural to molecules and

atoms. However, there is relatively little knowledge about the Hamiltonians

that are involved in molecular dynamics and it is in general very difficult to

calculate an optimal pulse shape to achieve control over molecular dynamics.

In the early 1990s, Rabitz et al. [3] introduced the concept of “closed loop

learning control”. This approach does not require a priori knowledge of the

molecular system. Instead, a learning algorithm controls the pulse shaper. It

uses the effects of the shaped pulses on the molecular system as a feedback

in order to create new pulse shapes. After several iterations of this loop the

algorithm converges and finds an optimal pulse shape. Learning algorithms

such as the Genetic Algorithm (GA) have been remarkably successful in find-

ing optimal tailored laser pulses[4]. Many experimental implementations have

shown that this approach is prosperous. Success in controlling vibrational

excitation, high harmonic generation, selective molecular fragmentation and

other applications has been demonstrated[5, 6, 7, 8, 9]. Our interest is focused

on selective molecular fragmentation. There were several recent exciting ex-
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perimental demonstrations in this field of laser selective chemistry[10, 11].

While discovering optimal pulse shapes for control has been demonstrated

for many different systems, gaining an understanding of the physical control

mechanism has generally proven to be more difficult. This is because of the

nonlinear dependence of fragment selectivity on pulse shape and the high di-

mensionality of the parameter space that can be accessed with ultrafast optical

pulse shapers. Current pulse shaping technology allows for independent control

over the phase, amplitude, and polarization of hundreds of different frequency

components in an ultrafast laser pulse[12]. Furthermore, since strong fields are

available with amplified pulses, the non-perturbative electric fields in a focused

ultrafast laser pulse can open up many new molecular channels through multi-

photon absorption. While the high spectral resolution and strong fields have

enabled shaped ultrafast lasers to control a wide variety of chemical processes,

the high dimensionality of the available phase space has made interpretation

very difficult because one does not know a priori which dimensions are impor-

tant and how the different degrees of freedom act in concert.

There have been a few learning control experiments that have gained insight

into a particular control mechanism by making detailed comparisons between

calculations and experimental data[13, 8]. There have also been experiments

that have made use of parameterization of the problem in terms of a few
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control variables in cases where the control mechanism is understood[14]. An

ultimate goal in this area is to develop a general procedure for automatically

gaining Hamiltonian information from systems where the control mechanism

is not known a priori [15].

The aim of this thesis is to discuss a number of general techniques to

reduce the problem complexity and gain insight into the physical mechanisms

responsible for control. We discuss simulations and molecular fragmentation

experiments.

An initial step in understanding solutions to closed loop optimal control

problems is to separate necessary from sufficient elements. Sufficient elements

are characteristics of pulse shapes that are not required for control while not

having any adverse effects. Necessary elements correspond to pulse shape fea-

tures that are essential for gaining control. In general, GAs do not distinguish

between necessary and sufficient features, and therefore it is difficult to extract

control mechanism information from optimal pulses discovered by GAs.

Here, we discuss two mechanisms for separating necessary from sufficient

elements of optimal pulses. The first is looking at the variation of pulse shape

elements within a population as the algorithm converges, and the second is

using a cost functional (penalty) to actively suppress unnecessary deviations

in pulse shape from a chosen reference pulse shape (typically an unshaped
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pulse).

The use of a cost functional or gene variation may help to illuminate which

degrees of freedom are necessary to achieve control. However, the number of

degrees of freedom may still be large. One approach to lowering the dimen-

sionality of the problem is to change the basis in which the space of accessible

pulse shapes is searched - i.e., transform to a basis in which the problem is

separable. Here, we will associate the dimensionality of the problem with the

number of necessary degrees of freedom required to achieve a specified control

goal. The transformation required may be linear (analogous to forming normal

modes for a series of coupled oscillators) or non-linear (analogous to transform-

ing from Cartesian to spherical coordinates). This distinction between linear

and nonlinear transformations is subject to future work.

If the optimal pulse shape for achieving a particular control target can

be expressed in terms of a few degrees of freedom, then it is feasible to scan

along these degrees of freedom to map out a “control surface” in analogy to

constructing a potential energy surface (PES) along a subset of coordinates in

a polyatomic molecule.

Discovering optimal bases for molecular control is a nontrivial task, and it is

in general not obvious what transformation will be most successful in reducing

the dimensionality of the problem. However, in this thesis we demonstrate that
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two simple, intuitive basis transformations are capable of greatly reducing the

dimensionality in two separate molecular fragmentation problems, allowing for

scans along important dimensions of the problem. These scans point toward

a physical interpretation of the control in each of the systems examined.
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Chapter 2

Experimental Setup

The experiments described in this thesis make use of a Ti:Sapphire laser system

capable of producing 30 fs pulses with an energy of ≈1 mJ at a repetition

rate of 1 kHz[16, 17]. A femtosecond oscillator seeds a chirped pulse multipass

amplifier system. We shape the laser pulses and focus them into our interaction

chamber. A schematic diagram of the setup of the essential devices for the

fragmentation experiments is shown in Fig. 2.1.

Since the development of ultrafast lasers, a number of techniques to shape

the electric field of laser pulses have been introduced. We chose to use an

Acousto-Optic Modulator (AOM) pulse shaper[18] for several reasons. The

phase is written to the spectrum as a smooth function and there are no pixe-

lation artifacts in the shaped pulse. With modern digital to analog computer

boards it is also possible to update the pulse shape fast so that we can exploit
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Computer

System

Oscilloscope

GA

AWG

fs-oscillator

Amplifier

AOM PS

TOFMS

Figure 2.1 Experimental setup. AOM PS: pulse shaper, TOFMS: time of
flight mass spectrometer, GA: genetic algorithm, AWG: arbitrary waveform
generators

the high repetition rate of the laser system and have a high speed feedback

loop for learning control experiments. Furthermore there is a low degree of

coupling between the phases of different frequency components and, from a

programming point of view, the transfer function is straight forward, i.e., one

can write programs that operate on a phase function φ(ω) and write this

function directly to the pulse shaper. Amplitude shaping is straight forward,

though we did not make use of it in the experiments.

The principle of an AOM pulse shaper is like most ultrafast pulse shaping

techniques based on manipulating the pulse (phase and amplitude) in the

frequency domain. We use an f -2f -f configuration as shown in Fig. 2.2. A
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PAOM RF

Grating 1

Grating 2

Curved Mirror 1

Curved Mirror 2

Fold Mirror 1

Fold Mirror 2

Figure 2.2 AOM pulse shaper. RF: connector for the shaped radio frequency.
P: piezo crystal. AOM: acousto-optic modulator crystal.

grating disperses the frequencies of the incoming pulse. The diverging beam

is collimated by a curved mirror. The AOM sits in the plane where the laser

frequencies are mapped to space. We apply a shaped radio frequency (RF)

pulse to the piezo crystal which is attached to the AOM crystal. This launches

an acoustic wave across the AOM. The RF pulse is timed with the laser pulse

such that the complete RF wave is written to the AOM by the time the laser

pulse arrives. The laser “sees” the acoustic wave as transmissive diffraction

grating, because the density modulations caused by the acoustic wave along

the crystal correspond to modulations in the index of refraction. Our AOM
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has a diffraction efficiency of ≈ 50%. The diffracted beam is refocused onto

the second grating where the frequencies are recombined to form the shaped

laser pulse. The overall efficiency of our pulse shaper is ≈ 30%.

Oscillator

150 MHz

90°

splitter

Mixer 1 Mixer 2

Combiner

RF

Amplifier

to AOM

cos(Φ(t)) sin(Φ(t))

Figure 2.3 RF shaping scheme.

We produce the shaped RF pulse using the scheme shown in Fig. 2.3. A

local oscillator puts out a sine-wave of 150 MHz which is evenly split into

two components that are phase shifted by 90 degrees. These two components

are mixed with the outputs of two computer controlled arbitrary waveform

generators. We program the generators to produce voltages that represent
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the sine and the cosine of the desired phase function φ. The mixed signals

are then recombined. We amplify the shaped RF to drive the piezo with

a peak power of ≈ 2 W. This combination of the splitter, the mixers and

the combiner is referred to as I&Q modulator and commonly used in RF

technology. Mathematically, the output U(t) of the I&Q modulator can be

described as

U(t) = cos(ωt) sin(φ(t)) + sin(ωt) cos(φ(t))

= sin(ωt + φ(t)), (2.1)

where ω is the carrier frequency (150 MHz) and φ(t) is the phase we wish to

write to the laser pulse. The RF pulse lasts for the period of time ∆t the

acoustic wave needs to travel across the AOM crystal. Since the frequencies

of the laser are mapped to the length of the AOM, the phase φ(t) maps to

a phase φ(ωlaser) written to the laser pulse. Our pulse shaper allows for a

maximum of 60π phase across the spectrum of the laser pulse.

For pump-probe experiments, we make use of a Mach-Zender interferometer

(see Fig. 2.1). One arm contains the AOM pulse shaper and the other arm

provides an equivalent delay. We program a linear spectral phase, φ(ω) =

k(ω − ω0), onto the pulse shaper to introduce a pump-probe delay. We are

able to scan the time delay by changing k. For learning control experiments

we block the unshaped pulses.
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The pulses from both arms of the interferometer are focused into a vacuum

chamber and interact with an effusive molecular beam[17]. The pressure inside

the chamber was kept at ≈ 5×10−6 Torr during the experiments. A Time of

Flight Mass Spectrometer (TOFMS), which measures the mass to charge ratio

of positive ions produced in the laser focus, is connected to the interaction

region. A computer-based oscilloscope records the ion spectra.

The GA we use in our simulations and experiments considers an ensemble of

pulse shapes (the population) as potential solutions to the problem under study

(e.g. selective molecular dissociation). Each of these pulse shapes (individuals)

is represented by a series of numbers (genetic code) that encode the time-

dependent electric field.

In the laboratory, we directly control the spectral phase. Thus, the genetic

code represents the spectral phase φ(ω) that is written to the AOM. However,

there are many ways of encoding this phase. Each pulse shape in the search

space can be expressed as an expansion on a set of basis vectors (genes), where

the expansion coefficients are the genetic material (gene values). As discussed

below, the choice of basis in which any solution is expressed (and in which the

algorithm performs the search) is very important in guiding the interpretation.

Each electric field is allowed to interact with the system (either experimen-

tally or by simulation) and a measure of the success (fitness) of each shaped

12



laser pulse is collected. In the molecular experiments, the ratios or differences

of peak integrals representing different fragmentation channels are typically

used to evaluate the fitness of each laser pulse that produces a TOFMS. In

the simulations, we send the genetic code to a mathematical function which

assigns a fitness to each pulse shape. All pulse shapes are sorted according

to their fitness. The top 50% of the pulses are used to generate a new pop-

ulation of pulse shapes through a set of three operators (reproduction). The

operators we used for reproduction are elitism (10%), mutation (20%) and

two-point crossover (70%)[19]. Elitism allows the very best pulse shapes to

remain unchanged and be passed to the next generation, ensuring that there

is no loss of important genetic information. The type of mutation we make use

of is creep mutation: A small part of the genetic code is assigned random new

values with a Gaußian probability distribution centered around the old value.

Two-point crossover exchanges a randomly chosen part of the genetic material

between two individuals. The new population (generation) of pulse shapes is

then evaluated, sorted and used for reproduction. The GA goes through many

generations until there is no improvement in the average fitness (convergence).

13



Chapter 3

Simulations

While learning algorithms are important for effectively searching the phase

space, they do not yield insight into molecular physics without additional ef-

forts. Solutions discovered by learning algorithms can often have many features

that are not specific to the problem being solved, but are rather a consequence

of the way in which the algorithm operates. One must therefore be careful to

separate characteristics of the solutions that are dictated by the algorithm

from ones that occur in response to the physics in the problem.

To investigate the effectiveness of genetic variation and a cost functional in

separating necessary from sufficient elements of optimal solutions, we initially

focus on simple simulations that make the interpretation of the two approaches

clear. Following this, we look at other simulations to highlight the importance

of basis change in reducing dimensionality.
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3.1 The Importance of the Cost Functional:

Simple Two-Dimensional Simulations

The use of genetic variation as an identifier for unnecessary genetic information

is motivated by the idea that a collection of “fit” pulses should have similar

necessary features whereas any features that are unnecessary should have sig-

nificant variation throughout the population. A simple test of this idea is to

work on an optimization problem that requires only a subset of the available

genes (i.e., the problem has a lower dimensionality than the allowed number of

genes). We performed simulations on a very simple problem where the fitness

landscape consisted of a two dimensional Gaußian function:

F (G1, G2) = e−(G1−1)2−(G2−1)2 (3.1)

Here, G1 and G2 are the first and the second gene. The goal for the GA was

maximizing F , which corresponds to G1 = G2 = 1. In addition to the first two

genes we gave the GA eight unnecessary degrees of freedom. None of these

genes had an effect on the fitness. The values of the genes were allowed to

vary between −2 and +2. The initial population was randomly distributed in

a box around
−→
0 (corresponding to an unshaped pulse) with a spread of 0.2.

We added 7% noise, which is roughly the noise level of experimental molecular

fragmentation data for low signal averaging.
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The outcome of a typical GA run is shown in Fig. 3.1 a). We plot the

average values of each of the genes from the last generation. The error bars

represent the standard deviation in the last generation. One can see that

the algorithm performed well in finding the solution by looking at the first

two genes. Their values converged to 1. However, note that, although none

of the other genes affect the fitness, the average values for many of them

deviate significantly from zero. Not only are the average values for these “junk”

genes nonzero, but the distributions of the gene values about the average

values are very narrow - much narrower than one would expect for a random

distribution of gene values. This makes it very difficult to infer which genes are

necessary and which are merely sufficient simply by looking at the distribution

of gene values within the population. If one assumed that all genes that deviate

significantly from 0 are essential, here, one would yield a dimensionality of

more than two, despite the fact that the problem is only two dimensional by

design.

We believe that the convergence of unnecessary genes to values different

from the mean gene value is inherent to GAs, due to the conjoint action of

selection and reproduction. The effect of selection and reproduction is to lower

the diversity of junk genes. Selection reduces diversity by eliminating many

pulse shapes and reproduction largely does not generate new gene values.
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Figure 3.1 Typical outcome of simple algorithmic optimizations (see Eq. 3.1).
The data points and error bars are the average values and standard deviations
of each of the genes from the last generation. a) without cost functional b)
with cost functional.

We found that increasing the population size or mutation rate and range in

order to combat this was not effective because such large population sizes and

mutation rates are required to maintain normal junk gene distributions that

the GA no longer converges on experimentally feasible time scales. If the

results of real experiments are to be interpreted through statistical measures

of genetic variation, these variations must give a clear picture of the necessary

17



genetic material for simple problems such as the one discussed here. We argue

that because the statistical variation of junk genes only approaches a random

distribution in the limit where the algorithm does not rapidly converge, this

approach to separating necessary from sufficient information is not generally

appropriate.

The second technique we investigated to filter out the important dimen-

sions is the use of a cost functional[20, 6]. Each pulse shape is penalized for

deviations from a chosen reference pulse shape. It is implemented by creating

a new fitness according to

Fn = F −W

N∑
i=1

|Gi −G0i|p, (3.2)

where F is the original fitness,
−→
G0 is a chosen reference, N is the number

of genes, W is a weight, and p is chosen to be between 0.25 and 2. The

choice of p is discussed in more detail below. By looking at Eq. 3.2, one can

see that any deviation from the reference results in a decreased fitness. This

penalizes differences from the reference. In our simulations and experiments

the reference was
−→
0 . We determined the value for W by trial and error. The

cost functional was found to work best if the original fitness F went to ≈ 95%

of the fitness found with W = 0. In this regime, the cost functional does not

prevent the GA from converging, but it is able to suppress unnecessary genetic

variations from the reference.
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Fig. 3.1 b) shows the result of a GA run on the two dimensional problem

with cost functional (p = 0.25). Even without prior knowledge about the prob-

lem, it is obvious that optimization is possible with only the first two genes.

The absolute values of the other genes are less than 0.05 after convergence.

This is in contrast to Fig. 3.1 a), where many genes have nonzero values.

Note that the solutions found by the GA with the cost functional applied do

not have exactly the expected values for genes 1 and 2 (G1 = G2 = 1) but

are slightly smaller. This is because the cost functional modifies the fitness

landscape by pressuring the solutions toward the reference. It introduces a

gradient in all dimensions of the fitness landscape pointing towards
−→
G0. One

has to be careful to choose a weight for the cost functional, that allows it to

restrict unnecessary deviations from the reference, while not overly distorting

the fitness landscape. Lower noise in the problem allows for a smaller weight

of the cost functional.

The nature of the gradient is determined by the parameter p. Low values

(e.g. p = 0.25) put more pressure on small gene values, i.e., there is a larger

fitness increase for decreasing small gene values than for decreasing large gene

values by the same amount. High values (e.g. p = 2) put more pressure on

large gene values, i.e., there is a larger fitness increase for decreasing large gene

values than for decreasing small gene values by the same amount. Of course,
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the deviation from zero is not always a good measure for the importance of a

gene. Small gene values can be important for control (i.e., changing their value

to zero can significantly reduce the fitness). Determining the dimensionality

of a solution means setting some threshold value for small gene values to be

considered insignificant. After setting such a threshold, one has to justify the

choice by checking whether an individual with all gene values, that are smaller

than the threshold, set to exactly 0 still yields a fitness of at least 95% of its

original fitness. We performed this check for all of our control results.

By adding the cost functional to the algorithm, we are able to reduce the

dimensionality of the simple problem to the essential degrees of freedom. This

is in contrast to the use of genetic variation as a measure of necessary degrees

of freedom, which was shown to yield ambiguous information for the simple

toy problem considered here. The performance of the cost functional in more

complicated simulations and experiments is discussed below.

3.2 Change of Basis in Simulated Raman Scat-

tering Experiments

Understanding learning control requires more than identifying necessary and

sufficient elements of solutions found by the GA. An important goal is to reduce

20



the dimensionality and diagonalize the search space. In a completely diagonal

basis, the Hessian matrix Aij = ∂i∂jF (x1, ..., xN) of the fitness function F is

diagonal1[21]. Reducing the dimensionality and diagonalizing the phase space

correspond to finding a basis in which the fitness depends on only a few degrees

of freedom and the coupling between these degrees of freedom is minimized.

In order to explore the effects of changing the basis in which the GA

searches, we simulated the problem of optimizing the nonlinear spectrum of an

ultrafast laser pulse, which plays an important role in many coherent control

problems[22]. In particular, we concentrated on optimizing a chosen spectral

component of I(t). We considered a laser pulse with a spectral bandwidth of

28 nm centered at 778 nm. The GA was able to shape the spectral phase φ(ω).

For each pulse shape we computed the intensity as a function of time,

I(t) =
∣∣F {|E0(ω)| eiφ(ω)

}∣∣2 , (3.3)

where |E0(ω)| =
√

I0(ω) corresponded to a measured spectrum of our laser

pulse. The spectrum S(Ω) of I(t) was calculated:

S(Ω) = F {I(t)} . (3.4)

1If the fitness can be separated in terms of a sum, i.e. F (x1, ..., xN ) = f1(x1) + ... +

fN (xN ), the Hessian matrix of the fitness function is diagonal. If, however, the fitness

function is separable in terms of a product, i.e. F (x1, ..., xN ) = f1(x1) · ... · fN (xN ), the

Hessian matrix of the logarithm of the fitness function is diagonal.
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The goal for the GA was increasing the spectral content of I(t) between 4.10

THz and 5.60 THz while minimizing spectral content between 1.85 THz and

3.60 THz and between 6.33 THz and 16.5 THz. The fitness F for the GA

was the difference in the integrated spectrum between the first region and the

other two regions normalized to the entire spectrum. This optimization serves

as an idealized model of perturbative impulsive stimulated Raman scattering

(ISRS) excitation of different vibrational modes which depends on S(Ω)[23].

We ran the GA on this problem in two different basis sets. First we used

a simple differential basis in which the genes consist of the phase differences

between discrete frequencies. The phase φ(ωi) at each sample point ωi is given

by:

φ(ωi) =
i∑

j=1

Gj if ω = ωi. (3.5)

These discrete values of φ at ωi are interpolated with cubic spline polynomials

to make the phase a smooth function.

The result of such a simulation is shown in Fig. 3.2. We plot the gene

values of solutions averaged over 10 separate runs. The error bars represent

the standard deviations over these runs. Fig. 3.2 a) illustrates GA runs where

we did not apply any cost functional. Fig. 3.2 b) shows the results of GA runs

where we applied a cost functional as defined in Eq. 3.2 with p = 2. Here, the

cost functional was not able to reduce the number of genes that deviated from
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zero significantly. This is because the dimensionality of the problem cannot

be reduced in this basis. The degrees of freedom are coupled and the problem

cannot be treated as multiple single parameter optimizations (i.e., the Hessian

matrix is not diagonal). Furthermore, there exists no linear transformation

which can transform the problem into a basis in which the dimensionality of

the problem is reduced.
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Figure 3.2 Averaged solutions of the ISRS simulations a) without and b) with
cost functional. The genes encode differential phase (see Eq. 3.5).

We argue that the quality or suitability of a particular basis can be eval-
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uated according to the number of essential degrees of freedom, the degree of

coupling between them, and the uniqueness of solutions in that basis. A low

dimensionality of the control space is essential for interpretation and further

analysis of the control phase space. Low dimensional solutions found in an

intuitive basis set can reveal immediate insight into the physical control mech-

anism. Moreover, it is possible to explore the phase space in interesting regions

by scanning along these few essential components. For degrees of freedom that

are not coupled, an N dimensional problem is equivalent to N one dimensional

problems. For an uncoupled problem the search space is diagonal. Having

unique solutions for a given basis aids in interpreting the control mechanism,

and ensures reproducibility in finding optima in the phase space. Redundancy

in a search space makes the interpretation more complicated. If the gene val-

ues of solutions from multiple GA runs largely agree (i.e., have a low standard

deviation) one can be fairly sure that the same physical control mechanism is

being addressed by these solutions and that there is only one accessible glob-

ally optimal pulse shape. Thus, in this case, averaging solutions over multiple

GA runs is justified. If, however, different runs show different solutions, there

are likely multiple equivalent optima in the search space. As we show for one

of the molecular experiments below, averaging over different solutions can be

very misleading.
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The simple differential basis applied to the power spectrum optimization

problem does not meet the criteria stated above. Both the dimensionality of

the solutions and the variation of the gene values among different solutions

are high.

Here, we demonstrate a connection between an intuitively appropriate basis

for control and an understanding of the underlying control mechanism. Know-

ing that a periodic phase modulation is needed for solutions to this problem,

we transformed the problem into a basis which allows the genes to encode for

periodic spectral phase. This Fourier Phase Modulation (FPM) basis encodes

the phase as

φ(ω) =
∑

i

Gi cos(kiω). (3.6)

The modulation frequency ki is given by

ki =
2π

N

M − 1

G− 1
i, (3.7)

where N is the total number of points for sampling φ (600), M (20) is the

highest possible number of phase modulation periods, and G (20) is the num-

ber of genes. In this basis each gene codes for a periodic phase modulation

of a distinct frequency ki. Typical results from running the GA in the FPM

basis are shown in Fig. 3.3. The data in Fig. 3.3 a) is the average solution

from 10 runs without cost functional and Fig. 3.3 b) is the average solution

from 10 runs with cost functional. The most striking difference between the
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solutions found in the two basis sets is the number of nonzero genes when the

cost functional is applied. In the FPM basis the cost functional was able to

reduce the dimensionality to 1, making use of only gene 4. The same gene

was prominent in all runs without cost functional, but other genes were also

nonzero and the essential components of the search space were not evident.

The cost functional reveals the essential dimensions. We call gene number 4

the essential dimension because it accounts for over 95% of the total fitness

increase. The change to the FPM basis made it possible to reduce the dimen-

sionality of the optimization problem using the cost functional. This simple

case where the choice of optimal basis is obvious helps guide and interpret the

change of basis in more complicated problems - e.g., the FPM basis may be

well suited to problems that involve periodicity. We argue below that there will

frequently be experimental evidence to guide the choice of a basis which may

help to lower the dimensionality of the problem and aid in the interpretation

of the control mechanism.
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Figure 3.3 Averaged solutions of the ISRS simulations a) without and b) with
cost functional. The genes are encoded in the FPM basis (see Eq. 3.6).
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Chapter 4

Controlling Molecular Fragmentation

We performed the simulations presented in the previous chapter in order to

understand the effects of a cost functional and the change of basis. In this

chapter we describe how we used this understanding to learn about the physical

mechanisms which form the basis of our control experiments on three different

molecules.

In selective fragmentation experiments performed on 1,1,1-trifluoroacetone

(CH3COCF3), 1,1,1-trichloroacetone (CH3COCCl3) and bromoiodomethane

(CH2BrI) we show that it is possible to separate necessary from sufficient fea-

tures in the optimal control pulse by changing basis and using the cost func-

tional. Changing basis allows for a low dimensional control space in which a

control surface may be mapped out and point toward the physical mechanisms

responsible for control.
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4.1 Experiments on Trifluoroacetone

In our fragmentation experiments on trifluoroacetone we controlled the CF+
3 /

CH+
3 ratio. We concentrate here on our results when the goal was to maximize

CF+
3 at the expense of CH+

3 . Typical TOF ion spectra are shown in Fig. 4.1.

Fig. 4.1 b) is the fragmentation spectrum resulting from an unshaped laser

pulse. Fig. 4.1 a) is the spectrum obtained with a shaped laser pulse after a

closed loop optimization.

The most natural fitness function for achieving control over channel branch-

ing is the ratio of the products. However, the simple ratio is not an optimal

fitness function because it is especially susceptible to noise at low signal levels.

Instead, we used the difference between the ion yields of CF+
3 and CH+

3 as fit-

ness. This proved to be much more stable. In the case of our experiments on

CH3COCF3, we found that the optimal pulse shapes for optimizing differences

and ratios were equivalent. Of course, this is not always true and one has to

choose the fitness function carefully.

For an unshaped laser pulse the CF+
3 /CH+

3 ratio was 1.2. When the goal for

the algorithm was minimizing this ratio, it was possible to drive this ratio to 0.6

with a low intensity nearly transform-limited pulse. Aiming to maximize the

ratio, we were able to yield CF+
3 /CH+

3 = 3.0 . Correlated with the increased

CF+
3 yield was an increase in the CH3CO+ yield. The other peaks in the
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spectrum decreased. We were able to produce similar control results many

times.

In Fig. 4.2 a) we plot an average of solutions found by the GA over mul-

tiple runs in the simple difference basis (see Eq. 3.5) with the cost functional

suppressing unnecessary deviations from a transform-limited pulse. The ge-

netic code for each data set represents an average of the fittest five pulses

from multiple GA optimizations. The error bars in these figures represent the

standard deviation of gene values over the separate optimizations. One can

see that many genes were necessary for control. As the large error bars show,

even with the cost functional on, there is significant spread in the genetic code

of the solutions. Thus, according to our requirements for a good basis, the

differential basis is not well suited to this fragmentation problem.

In determining what might constitute an appropriate basis for the trifluo-

roacetone experiments, we looked at the optimal solutions, which we charac-

terized using second harmonic generation FROG[24]. In Fig. 4.3 we plot the

reconstructed electric field of a typical optimal pulse in a) time and b) fre-

quency domain representation. In time, the shaped pulse shows three promi-

nent pulses separated by≈ 90 fs. This corresponds to a frequency of ≈ 11 THz.

We observed such a well defined periodicity for all of the solutions. This,

as well as the results of the ISRS simulations, led us to use the FPM basis
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Figure 4.2 Averaged solutions when optimizing CF+
3 at the expense of CH+

3 in
trifluoroacetone a) in the differential phase basis b) in the FPM basis.

(see Eq. 3.6) for this molecular experiment. The solution found by the GA in

this basis is presented in Fig. 4.2 b). We average over several runs. The error

bars are the standard deviations over the separate optimizations. Only two

gene values are significantly different from zero. These are the only degrees of

freedom needed for control. To prove this, we programmed pulses with only

genes 2 and 3 kept at their optimal values and all other genes set to 0 onto

the pulse shaper. The fitnesses calculated from the resulting TOF ion spectra
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were at least 95% of the original fitnesses for all of the optimal pulses used

to produce Fig. 4.2 b). So, this FPM basis reduces the dimensionality of the

search space for this problem to two dimensions. The reproducability was

excellent in this basis set. Note that the error bars in Fig. 4.2 b) are much

smaller than those in Fig. 4.2 a).
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4.2 Experiments on Trichloroacetone

The success in finding a good basis for trifluoroacetone led us to investigate

a similar molecule. 1,1,1-Trichloroacetone (CH3COCCl3) is closely related to

1,1,1-trifluoroacetone; chlorine, the next halogen in the periodic table, substi-

tutes fluorine.

In analogy to the experiments on trifluoroacetone we aimed for increasing

the yield in CCl+3 at the expense of CH+
3 . Since the CCl+3 signal was much

smaller than the CH+
3 signal, we used a modified difference as fitness function:

F = C ·A−B where A was the CCl+3 and B the CH+
3 signal. C was chosen to be

between 5 and 10. This increases the emphasis on the objective of enhancing

A relative to the objective of decreasing B.

Fig. 4.4 shows typical ion spectra for a) an optimized and b) an unshaped

pulse. While unshaped pulses produced a CCl+3 /CH+
3 ratio of 0.086, optimized

pulses increased this ratio to 0.55. The shaped pulses enhanced the total counts

of the CCl+3 fragment and decreased the total counts of all other fragments. In

contrast to our findings for trifluoroacetone, the CH3CO+ signal decreased for

the optimized pulse shape. This is a strong argument for a control mechanism

that is different from the one in trifluoroacetone (see discussion in sections 5.1

and 5.2).

When we ran the algorithm in the differential basis (see Eq. 3.5) we always

35



found solutions with a high number of nonzero genes. The cost functional

was not able to decrease the dimensionality in this basis. However, given

the fact that this molecule is similar to trifluoroacetone, we were hoping that

the FPM basis (see Eq. 3.6) constitutes a good basis. Assuming that vibra-

tional dynamics are the underlying physical mechanism for the control in both

molecules, one would expect the characteristic timescales for trichloroacetone

to be longer than the ones for trifluoroacetone. Due to the higher mass of the

chlorine atoms, the vibrational frequencies of trichloroacetone are expected to

be smaller than for trifluoroacetone. In the FPM basis, the genes with higher

indices encode for lower frequencies of intensity modulations. When we ran

the optimizations in the FPM basis and also applied the cost functional the

GA repeatedly found low dimensional solutions where only 1 to 2 genes were

needed. However, the positions of the important genes were not reproduced

over different runs. Here, the change to the FPM basis provided reduction in

dimensionality, although it did not provide reproducibility. It is important to

note that there are cases where a particular basis is not perfectly suited but

can still reveal some physical insight. For this problem, we found that the

solutions were trains of pulses with a range of frequencies in I(t) (≈ 1.7 THz

to ≈ 12 THz).
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4.3 Experiments on Bromoiodomethane

The third molecule on which we performed fragmentation control experiments

is bromoiodomethane (CH2BrI). This molecule is the subject of a recent the-

oretical coherent control study and experimental nanosecond dissociative ion-

ization experiments[25, 26, 27]. Ultrafast coherent control experiments have

also been performed on a closely related molecule[28]. Here, our control goal

was enhancing the breakage of the stronger C−Br bond while minimizing the

breakage of the weaker C−I bond. As a fitness function we used a modified

ratio F = A/(A + B + C), where A was equal to the integrated signal from

CH2I
+ and B was equal to the integrated signal from CH2Br+. The small

constant C is chosen to prevent noise from producing artificially high fitness

increases at low signal levels. We also tried optimizing the simple ion signal

difference (F = A−B). However, here we saw that solutions when optimizing

differences did not always agree with solutions when optimizing ratios.

An ion spectrum produced by an unshaped laser pulse can be seen in

Fig. 4.5 b). The ratio of the number of CH2I
+ fragments to the number

of CH2Br+ fragments is 0.11. After running the optimization algorithm we

produced a ratio of 0.27. The spectrum corresponding to the optimal pulse is

shown in Fig. 4.5 a).
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Two representative solutions found in the simple difference basis (see

Eq. 3.5) are plotted with different symbols in Fig. 4.6 a). The GA repeatedly

found low dimensional solutions. This simple basis satisfies the criteria of low

dimensionality. At least 95% of the fitness increase is due to few genes. When

we performed the checks for small gene values being insignificant, we typically

needed to keep 2 to 4 genes. However, solutions found during different GA

optimizations do not agree and furthermore they correspond to separate op-

tima in the search space. Fig. 4.7 illustrates this. We plot the CH2I
+/CH2Br+

ratio during a scan between the two solutions shown in Fig. 4.6 a). These two

solutions are represented as the vectors
−→
G1 and

−→
G2, respectively. The pulse

shapes
−→
G(s) for this scan were calculated according to:

−→
G(s) =

−→
G1 + s ·

(−→
G2 −−→G1

)
(4.1)

We varied the parameter s from 0 to 1 and thus scanned from the solution
−→
G1

to the solution
−→
G2. In between the two solutions the ion yield ratio dropped

to less than 0.2. This corresponds to only 56% of the maximum increase for

an optimized pulse. This drop allows us to infer that the two solutions are

distinct optima in the search space rather than two points on a large shallow

optimum. Averaging the two solutions would yield a very poor solution and

would clearly lead to a misinterpretation of the control space.

Another basis with intuitive physical meaning is a polynomial expansion.
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Figure 4.6 Solutions found when optimizing CH2I
+ at the expense of CH2Br+

in bromoiodomethane. a) Two separate solutions found in the differential
phase basis b) Averaged solutions found in the polynomial basis.

It is an ideal expansion for linear dispersion and provides for simple control

over pulse duration. We expand the phase written to the pulse shaper about

the center frequency ω0:

φ(ω) =
N+2∑
i=2

Giai(ω − ω0)
i (4.2)

N is the number of genes. The GA operates on the genes {Gi} with values

between −1 and 1. The coefficients ai are determined by the pulse shaper
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+/CH2Br+ ratio during a scan according to Eq. 4.1 from the

solution marked with squares (at s = 0) to the solution marked with crosses
(at s = 1) in Fig. 4.6 a).

resolution limits for each order i separately.

Fig. 4.6 b) illustrates the solutions found in the polynomial basis. We

average over several solutions. The error bars are the standard deviations

over the different optimizations. Mainly second order and some fourth order

phase were required to optimize the ion ratio. We wrote pulse shapes to the

AOM where we only kept the second order term and we still measured 95%
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of the optimal increase in CH2I
+/CH2Br+. Therefore this polynomial basis

did extremely well at decreasing the dimensionality of the control problem. It

also proved to be highly repeatable, justifying an average over several different

solutions.

We used FROG to characterize the solutions found in the polynomial basis.

Fig. 4.8 shows reconstructed a) time and b) frequency representations of an

optimal pulse intensity and phase. The time duration (FWHM) is ≈ 1 ps. As

expected, the quadratic phase term is by far the dominant pulse feature. The

I(t) is close to being Gaußian. The deviations are mainly due to a non-Gaußian

spectrum I(ω).

We also used the FPM basis on the CH2BrI control problem. We found 2 to

4 necessary genes. But solutions of different optimizations were not consistent.

This illustrates that different molecules with different control mechanisms re-

quire different bases. The FPM basis allows for simple encoding of periodic

“kicks”. We are currently investigating the molecular dynamics of trifluoroace-

tone and on how control over the fragmentation of this molecule can be related

to periodic intensity modulations. The first gene of the polynomial basis codes

for linear frequency chirp and for pulse duration. As discussed below, low di-

mensionality in this basis leads to a different physical picture than in the case

of the trifluoroacetone.
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Chapter 5

Exploring Interesting Regions of the Search

Space

One approach to understanding the control dynamics is to exhaustively map

out the phase space of all possible pulse shapes. This approach is in general not

feasible due to the exponential scaling of the phase space with dimension. If

the full resolution of our pulse shaper is exploited (over 100 resolution points),

and one uses a coarse 8 bit encoding for each phase and amplitude, then

there are over 2 × 2800 = 10241 pulse shapes to be tried. By lowering the

dimensionality, the interesting regions of the phase space (those surrounding

extrema and connecting the unshaped pulse with the solution in the fitness

landscape) can be explored systematically. Here we present a few scans along

essential vectors in representations where the dimensionality of the problem

was shown to be greatly reduced.
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5.1 Pump-Probe Experiments on CH3COCF3

For trifluoroacetone we found that the FPM basis, where the genes correspond

to distinct periodicities in I(t) of the laser pulse, reduced the dimensionality.

This implies that the most important feature for control is the temporal spac-

ing of a series of pulses. Thus, we examined the fragmentation as a function of

time delay between a pair of transform-limited laser pulses. Fig. 5.1 shows the

CF+
3 fragment yield (heavy line) together with the I(t) of an optimized pulse

(thin line). The magnitude of the modulations in the ion signal proved to be

very sensitive to the intensities of the pump and the probe pulses. We saw

the most distinct features at focused intensities of 1.7×1014 W cm−2 for the

pump and 1.4×1014 W cm−2 for the probe pulse. This is very close to the in-

tensities where the control data was taken. The largest peak in the optimized

pulse was 1.6×1014 W cm−2. The only other fragment that showed correlated

modulations was CH3CO+. The features in the optimal pulse match up with

increases in the CF+
3 signal.

The optimal pulse we show as thin line in Fig. 5.1 has a periodicity of

≈ 170 fs. This is in contrast to the solutions presented in Fig. 4.2 and Fig. 4.3

where the periodicity is ≈ 90 fs. As stated before, we were able to produce

the solutions involving periodicities of ≈ 90 fs under constant conditions many

times. However, under different conditions (e.g. different value for p in the
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cost functional, different fitness function, and/or different laser spectrum), we

also found some solutions similar to the one shown in Fig. 5.1.

In addition to the time domain representation of the pump-probe data

and the optimal pulse shape, we show as insets the Fourier transform of the

pump-probe data and the optimal pulse as well as a filter diagonalization

spectrum[29] of the pump-probe data. The inset of Fig. 5.1 shows that the

Fourier components of the I(t) (inset a) of a solution agree with the frequencies

found by filter diagonalization and Fourier transform of the pump-probe data

(inset b). It is important to note that we found two frequency components in

the pump-probe data. The higher frequency component at ≈ 11 THz is close

to being the second harmonic of the lower frequency component at ≈ 5 THz.

In order to optimize the CF+
3 yield, the GA can make use of both, high and low

frequency components, by matching the frequencies of the modulations in the

shaped I(t) to the frequencies of the molecular dynamics. Inset a) of Fig. 5.1

shows that this particular optimal pulse contains both Fourier components.

The pulses discussed in section 4.1 (see also Fig. 4.3) show only frequency

components at 11 THz.

We believe that the observed dynamics in the pump-probe data are vibra-

tional dynamics on an ionic state PES. There are several reasons for this.

1. Preliminary electronic structure calculations show that the vibrational
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frequencies for the neutral molecule are much faster than the ones we

observe.

2. We account the prominent modulations in the pump-probe data to the

excitation of a large wavepacket. Typically the amplitudes of such a

wavepacket are much higher when launched by ionization than when

launched by Raman scattering off a neutral molecule.

3. The intensities at which we took the pump-probe and the control data

are larger than the saturation intensities for single ionization of molecules

similar to trifluoroacetone[30].

Electronic structure calculations indicate that the C−C bond between

CH3CO and CF3 is sufficiently weakened by ionization such that breaking

of this bond is virtually assured. Therefore, control of the CF+
3 signal is actu-

ally control over whether or not the CF3 fragment carries charge. The natural

fragmentation of the trifluoroacetone cation will lead to the production of

CH3CO+ and CF3. Our experimental data show no evidence for CH3COCF+
3

which is consistent with previous work[31]. One would expect, then, that

the production of CF+
3 arises from either 1) double ionization of the parent

molecule, 2) control of fragmentation of the parent cation to yield CH3CO and

CF+
3 , or 3) subsequent ionization of the CF3 fragment.
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The pump-probe data show distinct modulation in the CF+
3 signal which is

indicative of control over the parent cation and rules out post-fragmentation

ionization as an important mechanism. Preliminary structure calculations

indicate that modulations in the pump-probe data are consistent with motion

of the C−C bond between the CF3 and the CH3CO parts of the cation. We

believe that the CF+
3 production is influenced predominantly by stretching

and bending motion of this C−C bond. Cooperation between vibrational

wave packet motion along an ionic PES and the pulse structure can lead to

enhanced CF+
3 production through at least one of the two first mechanisms

listed above.

Additional experimental evidence (see section 5.2) suggests double ioniza-

tion of the parent molecule as the most likely path to production of CF+
3 . In

this scenario we interpret the modulation of the CF+
3 signal as indicating that

wave packet motion along the C−C bond modulates the probability for double

ionization of the parent molecule. There is little experimental evidence for the

production of CF+
3 via a single ionization mechanism. However, at this point,

we cannot yet rule out the possibility. This mechanism requires the laser pulse

to dress the ionic PES so as to allow the wave packet to tunnel to dissociation

into CF+
3 and other fragments[32]. We are continuing to investigate the extent

each of these mechanisms accounts for the control.
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5.2 Intensity Dependence of the CH3COCF3

Fragmentation

Our control experiments aimed for optimizing selective molecular fragmen-

tation by means of shaping the phase of laser pulses. Pulse shaping always

involves changing the intensity profile. A shaped pulse has a lower peak in-

tensity than the corresponding unshaped (transform-limited) pulse. Thus it is

essential to separately determine what role intensity plays in the control.

Fig. 5.2 shows integrated ion signals during a scan where we varied the

intensity of transform-limited laser pulses. The thick line represents the CF+
3

/ CH+
3 ratio which we tried to control in our learning loop optimization ex-

periments. The graph illustrates that transform-limited pulses of low intensity

(≈ 1× 1014 W/cm2) lower the CF+
3 /CH+

3 ratio to ≈ 0.7. As mentioned above,

also the solutions to this problem found by the GA are low intensity nearly

transform-limited pulses. The CF+
3 /CH+

3 ratio produced by these optimized

pulses was 0.6. Therefore the main portion of this control lies in the intensity

dependence of the fragmentation. On the other hand, this measurement of the

intensity dependence indicates that maximizing the CF+
3 /CH+

3 ratio is a more

complex control problem. The maximum of CF+
3 /CH+

3 is 1.2 in these mea-

surements, whereas the GA was able to increase the ratio to 3.0. This proves
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that the optimized pulse shapes achieve the control goal not by decreasing

the intensity. Instead, the control is a genuine effect of pulse shape, i.e., the

structure of the shaped pulse is responsible for control.
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Figure 5.2 Integrated fragment ion signals of trifluoroacetone (thin lines) and
CF+

3 /CH+
3 ratio (thick line) as a function of intensity.

Fig. 5.2 also corroborates our interpretation of the control mechanism. The

CH3CO+ ion appears at much lower intensities than the CF+
3 and any other

ion. This and the absence of a CH3COCF+
3 ion in all of our data indicates

that a singly ionized molecule virtually always dissociates into a CH3CO+
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ion and a neutral CF3 fragment. CF+
3 ion production only starts at higher

intensities. An increase in CH3CO+ is correlated with the increase in CF+
3 .

This is consistent with our interpretation of the CF+
3 production as a result

of double ionization. In this intensity scan, CF+
3 is only produced at high

intensities where double ionization of the parent molecule by a single pulse is

likely. Additional data shows that the threshold intensity for the formation

of C2+ is very close to the threshold intensity for the CF+
3 formation. The

occurrence of C2+ is a strong indication for double ionization. According to our

interpretation, the double ion would then dissociate into CF+
3 and CH3CO+

leading to a correlated increase in both signals, which we actually observe.

Thus, these measurements provide strong evidence for the double ionization

scheme mentioned in section 5.1.

5.3 Pump-Probe Experiments on CH3COCCl3

In our control experiments on trichloroacetone the FPM basis reduced the di-

mensionality. Thus, we also used pump-probe spectroscopy on this molecule

and studied the fragmentation spectrum as a function of the time delay be-

tween two transform-limited pulses. We found some enhancement in the CCl+3

signal for time delays that were significantly longer than the pulse durations,

i.e., where the pulses had no temporal overlap. We did not find distinct mod-
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ulations in the data. Yet, the pump-probe data showed that there are some

molecular dynamics caused by multiple pulses which can enhance the CCl+3

production. We believe that the GA makes use of these dynamics in the con-

trol experiments by producing trains of pulses. However, since there are no

distinct frequencies in the CCl+3 signal, a range of frequencies solved the con-

trol problem and the GA was able to find many different solutions with only

1 or 2 nonzero genes.

5.4 Quadratic Phase Scan on CH2BrI

For bromoiodomethane we found that a polynomial expansion is a suitable

basis. Most of the control was captured by the first gene which encoded the

quadratic term of the phase. An important cut through the search space is

therefore a scan that varies the quadratic phase (or linear chirp[33]) of the

laser pulse. The ratio of the ion signals of CH2I
+ to CH2Br+ during such a

scan is shown in Fig. 5.3. One can see that going from a transform-limited

(unshaped) pulse to increasing chirp magnitude (positive and negative) the

ratio increases monotonically. Note, however, that there is some asymmetry

about zero chirp. The ion ratio goes higher for positive chirp than for negative

chirp. This is consistent with the fact that the GA always found solutions

with the first gene being at a large positive value.
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correspond to pulse durations of 1 ps.

The observation of pulse duration as controlled by quadratic phase driving

the branching ratio is similar to that of Itakura et al.[34]. They find that pulse

duration can control the CH2OH+/C2H4OH+ branching ratio in dissociative

ionization experiments they performed on ethanol. Their measurements found

that quadratic phase could drive the ratio from 0.12 to 0.45 when varying the

pulse duration from 32 fs to 760 fs. They interpret their findings in terms of
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the holding time of a vibrational wave packet on the ionic PES dressed by

the light field. The dressing of the molecular PES by the light field steers the

wave packet toward the CH2OH+ channel and therefore the longer the PES

is dressed by the light fields, the higher the branching ratio they measured.

Our observations are quite similar, although there is an asymmetry in the

branching ratio with respect to the sign of the chirp. This is an indication

that the control is not completely explained by the pulse duration. It is also

not certain that the wave packet motion in the case of the CH2BrI is on an ionic

surface. The details of the control mechanism are still being investigated, but

what is important for this thesis is that the reduction of the dimensionality in

the CH2I
+/CH2Br+ control allows for a low dimensional parameter scan and

points in the direction of an established physical picture.

5.5 Intensity Dependence of the CH2BrI Frag-

mentation

To ensure that the control over the CH2I
+/CH2Br+ ratio is not dominated by

the decreasing intensity that goes along with increasing chirp, we also scanned

the fragmentation spectrum as a function of intensity for an unshaped pulse.

Fig. 5.4 shows integrated ion signals of such a scan. Where the signals of
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CH2I
+ and CH2Br+ are sufficiently above the noise level we also plot the

CH2I
+/CH2Br+ ratio. The maximum of this ratio is ≈ 0.12 in these mea-

surements, whereas we were able to increase this number to 0.27 by shaping

the laser pulses. Therefore, the control we achieved in the experiments on

bromoiodomethane is not a simple intensity effect.
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Chapter 6

Conclusions

The focus of this thesis is on developing tools for systematically gaining insight

into the physical mechanisms underlying shaped pulse control of molecular

fragmentation.

We argue that separating necessary from sufficient information in optimal

pulse shapes is an important first step in interpreting solutions found by the

learning algorithm. We have shown that when using a GA, one cannot in

general use genetic variation as an identifier for necessary information. A cost

functional however, can be very effective at isolating necessary information if

the number of essential dimensions is less than the number of available ones.

Furthermore, we have shown that a nonlinear change of basis can reduce

the dimensionality of the search space to a few degrees of freedom. Ultimately

one would like to automate the selection of new bases and search for optimal
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bases in a similar way that the GA searches for optimal pulses. What we

have shown here is that there are simple bases which can capture the essential

features of effective control pulses in one or two dimensions. This is in some

sense surprising because of the complexity of the molecular fragmentation

control problems discussed here. Our ability to reduce dimensionality with

simple basis changes highlights the fact that complexity is not inherent to the

problem and a change of representation can reformulate the problem in a much

simpler form.

The reduction in dimensionality of the control problems allowed us to scan

the control goal and construct a control surface in analogy to a PES for a

polyatomic molecule. This helped us to gain insight into the physical con-

trol mechanism. Ongoing efforts focus on molecular structure calculations for

trifluoroacetone with the goal of comparing them to the experimental results

presented here.
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